Calculation of the Cubic Crystal Field Splitting 10 Dq in KNiF$_3$. An Integral Hellmann-Feynman Approach

Integral Hellmann-Feynman Approach에 의한 KNiF$_3$의 Cubic Crystal Field Splitting 10 Dq의 계산

  • Hojing Kim (Department of Chemistry, College of Liberal Arts and Sciences, Seoul National University) ;
  • Hie-Joon Kim (Department of Chemistry, College of Liberal Arts and Sciences, Seoul National University)
  • 김호징 (서울대학교 문리과대학 화학과) ;
  • 김희준 (서울대학교 문리과대학 화학과)
  • Published : 1973.12.30

Abstract

By use of an Integral Hellmann-Feynman formula, the cubic crystal field splitting 1O Dq in $KNiF_3$ is calculated from first principles. Numerical values of covalency parameters and necessary integrals are quoted from Sugano and Shulman. The result, 7100$cm^{-1}$, is in excellent agreement with the observed value, 7250$cm^{-1}$. It is found that higher order perturbation energy correction is of the same order of magnitude as 10 Dq itself and is, therefore, essential tin calculating 10 Dq from first principles. It is also found that the point charge potential is the dominant part of the crystal field potential.

Keywords

References

  1. Ann. Physik v.3 H. Bethe
  2. Phys. Rev. v.41 J.H. Van Vleck
  3. Physica v.9 D. Polder
  4. J. Chem. Phys. v.20 W.H. Kleiner
  5. J. Phys. Soc. Japan v.11 Y. Tanabe;S. Sugano
  6. Phys. Chem. Solids v.11 J.C. Phillips
  7. Phys. Rev. v.120 A.J. Freeman;R.E. Watson
  8. Phys. Rev. v.130 R.G. Shulman;S. Sugano
  9. Phys. Rev. v.134 K. Knox;R.G. Shulman;S. Sugano
  10. Phys. Rev. v.130 S. Sugano;R.G. Shulman
  11. Phys. Rev. v.134 R.E. Watson;A.J. Freeman
  12. Phys. Status Solidi v.4 E. Simanek;Z. Sroubek
  13. J. Phys. Soc. Japan v.20 S. Sugano;Y. Tanabe
  14. J. Chem. Phys. v.47 P.O. Offenhartz
  15. Phys. Rev. v.180 H.M. Gladney;A. Veillard
  16. Proc. Phys. Soc. (London) v.88 J. Hubbard;D.E. Rimmer;F.R.A. Hopgood
  17. J. Korean Chem. Soc. v.17 H. Kim;H.J. Kim;U.R. Kim
  18. Phys. Rev. v.118 R.E. Watson
  19. Proc. Cambridge Phil. Soc. v.53 C. Froese
  20. J. Chem. Phys. v.7 J.H. Van Vleck
  21. The Theory of Atomic Spectra E.U. Condon;G.H. Shortley