Determination of Reactivities by Molecular Orbital Theory (VI). Sigma MO Treatment on $C_6H_5YCH_2Cl$

화학반응성의 분자궤도론적 연구 (제 6 보). $C_6H_5YCH_2Cl$ 형 화합물의 시그마분자궤도론적 고찰

  • Lee, Ikc-Hoon (Department of Chemistry, College of Science, Inha University) ;
  • Lee, Bon-Su (Department of Applied Chemistry, Seoul National University) ;
  • Lee, Jae-Eui (Department of Chemistry, College of Science, Inha University)
  • Published : 1974.04.30

Abstract

Extended H ckel Theory and CNDO/2 MO calculation methods have been applied to $C_6H_5YCH_2Cl$(Y = None, -$CH_2$-, -O-, -S-, -CO-, -$SO_2$-). It has been shown that charge distributions in molecules are mainly controlled by the migration of valence inactive electron, giving the order of ${\sigma}$-acceptor and ${\pi}$-donor effects -O- > -S- > -$CH_2$- > -$SO_2$-. The -CO- group exceptionally acts as ${\sigma}$-donor and ${\pi}$-acceptor. It was also predicted that, $S_N2$ reactivities of C$C_6H_5YCH_2Cl$ would be in the order of -O-${\thickapprox}$-CO- >>-S-${\thickapprox}$None > -$CH_2$-, neglecting solvent effect. From the results of our studies, we conclude that the structural factors influencing 의 $S_N$ reactivities will be: (1) positive charge developments on reaction center carbon atom (2) energy level of ${\sigma}$-antibonding unoccupied MO with respect to C-Cl bond. (3) ${\sigma}$-antibonding strength of C-Cl bond at that level.

Keywords

References

  1. Molecular Orbital Theory for Organic Chemistry A. Streitwieser Jr.
  2. Singma Molecular Orbital Theory Octay Sinanoglu;K. B. Wiberg
  3. Ministry of Science Technoloy Report No. R-72-71 Mo Theoretical Studies on Chemical Reactivity I. Lee
  4. J. Chem. Phys. v.40 R. Hoffmann
  5. J. Chem. Phys. v.44 J. A. Pople;D. P. Santry;G. A. Segal
  6. Approximate Molecular Orbital Theory J. A. Pople;P. L. Beveridge
  7. Bull. Chem. Soc., Japan v.38 K. Morokuma;H. Kato;T. Yonezawa;K. Fukui
  8. J. Amer. Chem. Soc. v.91 C. Trindle
  9. Tetrahedron v.24 K. B. Wiberg
  10. J. Amer. Chem. Soc. v.93 I. Lee;M. H. Whangbo
  11. J. Chem. Educ. v.50 J. D. Bradely;G. C. Gerrans
  12. Bull. Chem. Soc., Japan v.42 K. Fukui;H. Hao;H. Fujimoto
  13. Bull. Chem. Soc. Japan v.46 T. Fueno;O. Kajimoto;K. Izawa;M. Masago
  14. Bull. Chem. Soc. Japan v.44 J. Hayami;N. Tanaka;S. Kurabayashi;Y. Kotani;A. Kaji
  15. J. Chem. Phys. v.51 R. L. Hilderbrandt
  16. Structure and Mechanism in Orhanic Chemistry C. K. Ingold
  17. J. Amer. Chem. Soc. v.93 J. P. Lowe
  18. J. Amer. Chem. Soc. v.94 J. P. Lowe
  19. J. Amer. Chem. Soc. v.84 A. Dedieu;A. Veilard
  20. Mechanism and Structure in Organic Chemistry E. S. Gould
  21. J. Amer. Chem. Soc. v.84 J. O. Edward;R. G. Pearson
  22. J. Amer. Chem. Soc. v.90 G. Klopmann
  23. 有機反應機構 v.11 井本英二
  24. Interatomic Distances
  25. Interatomic Distances Supplement
  26. B. S. Lee;I. Lee
  27. J. Chem. Phys. v.39 R. Hoffmann
  28. J. Koeran Nucl. Soc. v.5 C. H. Park
  29. J. Chem. Phys. v.23 R. S. Mulliken
  30. J. Koeran Chem. Soc. v.13 B. S. Lee;I. Lee