The Anionic Polymerization of ${\n varepsilon}$-Caprolactam using Potassium-hydroxide as a Catalyst and N,N'-Adipyl-bis-${\n varepsilon}$-caprolactam as Initiator

N,N'-Adipyl-bis-${\n varepsilon}$-caprolactam과 KOH에 의한 ${\n varepsilon}$-Caprolactam의 음이온 중합

  • Hwan-Kyu Shu (Department of Chemical Science, Korea Advanced Institute of Science) ;
  • Sam-Kwon Choi (Department of Chemical Science, Korea Advanced Institute of Science)
  • 서환규 (한국과학원 화학 및 화학공학과) ;
  • 최삼권 (한국과학원 화학 및 화학공학과)
  • Published : 1976.04.30

Abstract

The anionic polymerization of ${\varepsilon}$-caprolactam with N,N'-adipyl-bis-${\varepsilon}$-caprolactam as an initiator and potassium hydroxide as a catalyst was studied under various conditions.It was found that concentration of catalyst and initiator was 4.2 and 1.6 mole %, and polymerization temperature of 130$^{\circ}C$C, polymerization time of 1.5 hours was the optimum condition. The intrinsic viscosity and molecular weight of the obtained polymer was over 0.9 dl/g and 12,000. The polymerization was carried out in the presence of N-acyl-${\varepsilon}$-caprolactam as an initiator, it was observed that the reactivity of N,N'-adipyl-bis-${\varepsilon}$-caprolactam was greater than both of the N-benzoyl-${\varepsilon}$-caprolactam and N-acetyl-${\varepsilon}$-caprolactam. In general it was also observed that the intrinsic viscosity and yield of conversion was increased as an increasing of concentration of catalyst and initiator and also highly depend on temperature.

Keywords

References

  1. U.S. Pat., 2,251,519 R.M. Joyce;D.M. Ritter
  2. J. Polym. Sci. v.3 W.E. Hanford;R.M. Joyce
  3. Faserforsch Textiltech v.7 W. Griehl
  4. C.A. v.49 no.15 W. Griehl
  5. J. Polym. Sci. v.30 J. Saunders
  6. J. Polym. Sci. v.30 Kralicek;J. Sebenda
  7. Bull. Chem. Soc. Japan v.31 H. Yumoto;N. Ogata
  8. Faserforsch Textiltech v.10 S. Schaff
  9. C.A. v.54 S. Schaff
  10. J. Polym. Sci. v.4 T. Konomi;H. Tani
  11. Bull. Chem. Soc. Japan v.31 Y. Yumoto;N. Ogata
  12. Makromol. Chem. v.35 O. Wichterle
  13. J. Polym. Sci. v.11 H. Sekiguchi;B. Coutin
  14. Collection Czeh. Chem. Comm. v.29 J. Stehlicek;J. Sebenda;O.Wichterle
  15. C.A. v.60 no.14 J. Stehlicek;J. Sebenda;O.Wichterle
  16. GER.(EAST), 19,839 A. Matthes;K. Zimmermann;R. Glasmann
  17. C.A. v.60 no.14 A. Matthes;K. Zimmermann;R. Glasmann
  18. A-G., Brit., 945,218 F. Bayer.
  19. Brit., 931,013
  20. C.A. v.59 no.10
  21. Brit. Part., 1,098,093 N.R. Hurworth
  22. C.A. v.68 no.50 N.R. Hurworth
  23. J. Polym. Sci. v.10 C.V. Goebel;P. Cefelin; J. Stehlicek;J. Sebenda
  24. J. Applied. Polym. Sci. v.17 M. Mazner;J.E. Mcgrath;S.W. Chow;J.V. Koliske;L.M. Robenson
  25. U.S. Pat., 2,739,959 W.O. Ney;Crowthers
  26. J. Amer. Chem. Soc. v.80 H.K. Hall
  27. U.S. Pat., 3,017,391 E.H. Motthus;R.M. Hedrick;J.M. Butler
  28. K.C. Frisch;S.L. Reegen
  29. J. Polym. Sci. v.1 S. Barzakey;M. Levy;D. Vofsi
  30. J. Amer. Chem. Soc. v.70 R.E. Benson;T.L. Cairns
  31. J. Amer. Chem. Soc. v.64 M.L. Huggins
  32. J. Amer. Chem. Soc. v.73 J.R. schaefgen;F. Trinrisonnes
  33. The Israel Program for Scientific Translations Synthetic Hetero-Chain Polyamides V.V. Korshak;T.M. Frunze
  34. J. Polym. Sci. v.7 H. Tani;T. Konomi
  35. C.A. v.60 no.14 F. Bayer.
  36. Organic Synthesis v.2 E.C. Horning
  37. J. Polym. Sci. v.43 N. Yoda;A. Miyake
  38. Angew. Chem. v.54 K. Goldstein