The Effect of the Configuration Interaction on 10Dq in a Point Charge Model

점전하 모형에 의한 10Dq 에서의 배치간 작용의 영향

  • Hojing Kim (Department of Chemistry, Seoul National University) ;
  • Duckhwan Lee (Department of Chemistry, Seoul National University)
  • 김호징 (서울대학교 자연과학대학 화학과) ;
  • 이덕환 (서울대학교 자연과학대학 화학과)
  • Published : 19770230


For the metal complex of $d^1$ configuration with the octahedrally coordinated ligands, the crystal field parameter, 10Dq, is calculated from first principles within the framework of the crystal field theory. With the point charge model, the configuration interaction is introduced by use of the Shull-L$\"{o}$wdin functions. Through the Integral Hellmann-Feynman Theorem, the higher order effect is visualized. It is found that the higher order effect on 10Dq is about $50{\%}$ of the first order effect. Since 3d function is angularly undistorted and radially equally distorted in $E_g\;and\;T_{2g}$ states, due to the octahedral potential, the calculated 10Dq is still the unique parameter for the splitting.



  1. Ann. Physik. v.3 H. Bethe
  2. Phys. Rev. v.41 J. H. Van Vleck
  3. Introduction to Ligand Field Theory C. J. Ballhausen
  4. J. Chem. Phys. v.26 O. G. Homes;D. S. McClure
  5. Acta Chem. Scand. v.8 Bjerrum;Ballhausen;Jorgensen
  6. J. Chem. Phys. v.29 C. A. Hutchison;E. Y. Wong
  7. J. Korean Chem. Soc. v.20 Hojing Kim
  8. Theory of Atomic Spectra E. U. Condon;G. H. Shortley
  9. Molecular Phys. v.2 J. O. Hirschfelder;P. O. Lowdin
  10. The Theory of Transition Metal Ions J. S. Griffith
  11. Angular Momentum in Qunatum Mechanics A. R. Edmond
  12. Inorg. Chem. v.5 Fenke;Caulton;Radtke;Sweeny
  13. Acta Cryst. v.9 S. Siegel
  14. J. Chem. Phys. v.31 R. L. Belford;M. Karplus
  15. J. Chem. Phys. v.46 F. Grein;M. H. Hawton
  16. Pro. Coll. Natur. Sci. v.1 Hojing Kim;Chunwoo Lee
  17. J. Chem. Phys. v.23 H. Shull;P. O. Lowdin
  18. J. Chem. Phys. v.26 Belfold;Calvin;Belford
  19. Phys. Rev. v.130 no.2 S. Sugano;R. G. Shulman