재생모판막치환술 1예보고

심 영욱* - 이 영균*

Abstract

A Case Report of Redo MVR

Yong Moog Sim, M.D.,* Yung Kyoong Lee, M.D.*

We recently experienced Redo MVR to the patient who had received MVR due to MSI by Angell-Shiley porcine Xenograft at SNUH 3 years ago. Three months ago, infective endocarditis developed and heart failure progressed so he revisit our hospital and diagnosed prosthetic valve failure.

He received MVR again with Ionescu-Shiley valve and discharged somewhat improved state.

1. 서 론

심장판막치환술 후 혼히 발생하는 합병증은 혈전색전증, 출혈, 심내막염, 조직손상(tissue failure), 판막주위 누출(perivalvular leak) 등이 있으며, 수술방법의 발달과 새로운 인공판막의 등장에도 불구하고 인공판막치환술 후 발생하는 심내막염은 현재 내과의사에게나 외과의사에게 치료에 어려움을 주는 문제로 남아 있으며, 비교적 드물게 발생하는 것이나 치명적인 결과를 초래하고 있다.

최근 본원에서는 1978년 1월 승모판 혈착 및 기능부전증으로 Angell-shiley 판막으로 승모판막치환술을 받은 환자가 수술 3년후 발생한 심내막염에 의하여 다시 발생한 승모판막기능부전증을 개심술에 의한 승모판막 재치환술로 성공적인 증세의 호전을 보았던 바, 이에 문헌고찰과 더불어 보고하고자 한다.

2. 증례

환자는 33세 남자 환자로서 3개월전부터 시작된 호흡곤란 및 상복부 불쾌감을 주소로 입원하였다.

이 환자는 1978년 1월 경질적사후 승모판막치환술 및 기능부전증이라는 진단하여 본원에서 Angell-Shiley 판막(25mm)에 의한 승모판막치환술을 받고 중세 호전되어 되원하였는데 그 후 3년간의 외래방문을 통하여 별다른 이상을 발견할 수 없이 양호한 상태로 지내웠다. 1981년 7월 갑자기 호흡곤란을 동반하는 발열이 발생하여 인근 종합병원을 방문하였던 바, 감염성 심내막염(SBE)이라는 진단하여 항생제투여 등 내과적 치료를 받았으나 열은 멈추었으나 호흡곤란과 부분발.imag은 더욱 심해져서 본원을 방문 입원치료를 받게 되었다.

입원시의 이학적 소견은 환자에게서 호흡곤란의증세를 볼 수 있었으나 천식증은 없었으며 (NYHA class IV)혈압은 90/60mm Hg, 맥박은 80회/분으로 정상의 범위였다. 증상은 흉부통 및 심장(Apex)의 근처에 수축기소음을 들었고, 심장에는 제3,4절의 이완기 소음도 들었다. 간장은 4척저절도 변쳤으며 심한 경미의 충혈을 볼 수 있었고 복부의 전반적인 팽만이 있었으며 하지에는 부종이 있었다.

혈액소정상 약간의 비혈중증이 있었으나 백혈구는 증가되어 있었고(11.0~36.7/7,000) ASO는 1:1250, C- RP는 ++이었고 혐구검사에 34이었다. 인공판막 침착이 경추부에 있던 영역을 시행하였으나 굽은 자라지 않았다.

단순동맥 X-선 소견상 경미한 심장의 비대가 있었으며, 우측심방에 산출액이 고여있는 것을 볼 수 있었으며 (Fig.1) 심전도에서 심방세동 및 우심실비대의 소견이 나왔고 심초도 검사상 입증승모판막에 우증(vegetation)이 있는 것을 볼 수 있었다. 우중매분에 최측 심질

* 서울대학교병원 흉부외과학교실

Department of Thoracic and Cardiovascular Surgery,
College of Medicine, Seoul National University

- 213 -
판 조영술은 시행할 수 없었고 우측 심도자술을 시행한 결과 재합병력 압력 80/48/60mm Hg이었고 우심방의 평균 압력이 24mm Hg이었다.

Fig.1 제수술전의 단순흉부 X-선 사진
이상의 이학적 소견 및 검사 소견상 이 화자는 인공수
모판막협착후 발생한 심내막염에 의한 인공판막패세
문에 승모판막기능부전증 및 심장판막기능부전증이 발생
하여 심한 심부전증이 온 것으로 판단되어 승모판막협
착 및 심장판막병행술을 택 목적으로 수술을 시행하였다.

3. 수술소견 및 방법
전신마취하에 통증증증제로 수술을 시행하였는데, 심
장이 매우 두꺼워져 있었으며 심낭과 심외막(epicardium)
사이에 심한 유착이 있는 것을 볼 수 있었다. 개심술에
앞서 수신 심낭제거술 및 박리를 시행하였는데 중앙혈액
암이 50 cmH2O에서 20 cmH2O로 감소되는 것을 볼 수
있었고, 우심방은 심하게 팽창되어 있었으나 우심방은
심한 유착에 의하여 느어지지 못한 상태로 있는 것을 볼
수 있었다. 상태감사 및 하대조직 수자의 유착이 너무
심하여 상태감사 및 하대조직의 각각 balloon cannula
를 우심방을 통하여 삽관하였는데, 우심방 거의 대부분
을 채널려가 차지하게되었다. 동맥관관러라는 대동맥에 삽
관하고 인공조기기를 사용하였다.
수술중 체온을 선향기의 산화장치로 28℃ 중통도 저
체온법을 사용하였으며, 임근보호를 위해 4℃의 명각된
Bretschneider의 심마비액을 대동맥 기시부에 마린된
카는데를 통하여 주입하였으며 수술중 계속 국소냉각법
을 이용하였다.
우심방 전개 후 심방중격결제에 의해 승모판막에 도달
할 수 있었으며 인공활력판막이 심하게 파괴되었고 우증
(vegetation)이 다양 붙어있는 것을 볼 수 있었다(Fig. 2).
파괴된 판막을 제거한 후 Ionescu-Shily의 판막을
식하였으며, 삼편판막의 심한 기능부전을 알 수 있었으
나 수출기능상 죽는기가 균란하여 그냥 두었다.

4. 수술후 결과
수술후 화자는 심장판막 기능부전증 및 비교적 작은크
기의 인공판막치환이 원인으로 생각되는 우심부전증세
로 오랜 시간 입원하여 약물치료를 받았으며, 비교적 상
태성만이 되고하였다(Fig.3).

5. 고 안
개심술후 발생하는 심내막염은 많은 의학의 발전이 있

Fig.2 파괴된 인공판막
- 214 -
Table 1. Linearized Mortality and Morbidity Rates

<table>
<thead>
<tr>
<th></th>
<th>Aortic Valve</th>
<th>Mitral Valve</th>
<th>Multiple Valve</th>
</tr>
</thead>
<tbody>
<tr>
<td>Late mortality</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thromboembolism</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.7</td>
<td>1.8</td>
<td>2.9</td>
</tr>
<tr>
<td>Fatal</td>
<td>0</td>
<td>0</td>
<td>1.5</td>
</tr>
<tr>
<td>Hemorrhage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1.0</td>
<td>1.4</td>
<td>0</td>
</tr>
<tr>
<td>Fatal</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Endocarditis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.5</td>
<td>0.5</td>
<td>4.4</td>
</tr>
<tr>
<td>Fatal</td>
<td>0.2</td>
<td>0.5</td>
<td>4.4</td>
</tr>
<tr>
<td>Tissue failure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fatal</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Perivalvular leak</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>3.1</td>
<td>0.9</td>
<td>5.8</td>
</tr>
<tr>
<td>Fatal</td>
<td>1.0</td>
<td>0</td>
<td>2.9</td>
</tr>
</tbody>
</table>

Values expressed as percent per patient-year.

Table 2. Cause of Late Cardiac-related and Valve-related Deaths

<table>
<thead>
<tr>
<th>Cause</th>
<th>1960-72 (%/pt-yr)</th>
<th>1973-80 (%/pt-yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart failure</td>
<td>0.9</td>
<td>0.7</td>
</tr>
<tr>
<td>Infarction</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>Arrhythmia</td>
<td>0.4</td>
<td>0.7</td>
</tr>
<tr>
<td>Sudden unknown</td>
<td>1.0</td>
<td>0.8</td>
</tr>
<tr>
<td>Total (p > 0.10)</td>
<td>2.6</td>
<td>2.3</td>
</tr>
<tr>
<td>Valve-Related</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Embolus</td>
<td>0.6</td>
<td>0.3</td>
</tr>
<tr>
<td>Prosthetic thrombosis</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Ball variance</td>
<td>0.1</td>
<td>–</td>
</tr>
<tr>
<td>Endocarditis</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Hemorrhage</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Total (p < 0.01)</td>
<td>1.2</td>
<td>0.6</td>
</tr>
</tbody>
</table>

aAortic and mitral initial single caged-ball implants only.
Table 3. Linearized Morbidity and Mortality Rates*

<table>
<thead>
<tr>
<th></th>
<th>AVR</th>
<th>MVR</th>
<th>AVR-MVR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operative mortality (%)</td>
<td>5.7</td>
<td>8.9</td>
<td>14.9</td>
</tr>
<tr>
<td>Late mortality</td>
<td>4.1</td>
<td>5.5</td>
<td>4.4</td>
</tr>
<tr>
<td>Thromboembolism</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Over-all</td>
<td>1.7</td>
<td>2.6</td>
<td>1.6</td>
</tr>
<tr>
<td>Fatal</td>
<td>0.1</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>Anticoagulant hemorrhage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Over-all</td>
<td>0.9</td>
<td>1.2</td>
<td>0.6</td>
</tr>
<tr>
<td>Fatal</td>
<td>0.0</td>
<td>0.2</td>
<td>0.0</td>
</tr>
<tr>
<td>Valve dysfunction</td>
<td>1.0</td>
<td>1.2</td>
<td>1.6</td>
</tr>
<tr>
<td>Endocarditis</td>
<td>1.5</td>
<td>0.5</td>
<td>2.2</td>
</tr>
</tbody>
</table>

*Expressed as percent per patient-year, unless otherwise indicated.

Table 4. Endocarditis on Hancock Bioprostheses: Clinical Data

<table>
<thead>
<tr>
<th>Case No.</th>
<th>Age</th>
<th>sex</th>
<th>Operation</th>
<th>Onset after operation (mo)</th>
<th>Toal postop. period (mo)</th>
<th>Infecting organism</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>31</td>
<td>F</td>
<td>MVR</td>
<td>23</td>
<td>26</td>
<td>Candida species</td>
<td>Pharyngitis</td>
</tr>
<tr>
<td>2</td>
<td>46</td>
<td>F</td>
<td>MVR</td>
<td>86</td>
<td>87</td>
<td>Klebsiella pneumonia</td>
<td>Pneumonia</td>
</tr>
<tr>
<td>3</td>
<td>31</td>
<td>F</td>
<td>MVR, AVR*</td>
<td>66</td>
<td>68</td>
<td>Staphylococcus aureus</td>
<td>Dental manipulation</td>
</tr>
<tr>
<td>4</td>
<td>49</td>
<td>M</td>
<td>AVR</td>
<td>6</td>
<td>7</td>
<td>Candida species</td>
<td>Unknown</td>
</tr>
<tr>
<td>5</td>
<td>72</td>
<td>M</td>
<td>AVR</td>
<td>19</td>
<td>35</td>
<td>Streptococcus viridans</td>
<td>Unknown</td>
</tr>
<tr>
<td>6</td>
<td>44</td>
<td>F</td>
<td>AVR, MVR, TVR*</td>
<td>2</td>
<td>2</td>
<td>Candida species</td>
<td>Pneumonia</td>
</tr>
<tr>
<td>7</td>
<td>41</td>
<td>M</td>
<td>MVR</td>
<td>1</td>
<td>2</td>
<td>Enterobacter cloacae</td>
<td>Unknown</td>
</tr>
<tr>
<td>8</td>
<td>52</td>
<td>M</td>
<td>MVR, AVR*</td>
<td>16</td>
<td>17</td>
<td>Aspergillus species</td>
<td>Unknown</td>
</tr>
<tr>
<td>9</td>
<td>39</td>
<td>M</td>
<td>AVR, MVR</td>
<td>3</td>
<td>3</td>
<td>Serratia marcescens</td>
<td>Urethrectomy</td>
</tr>
</tbody>
</table>

Legend: MVR, Mitral valve replacement. AVR, Aortic valve replacement. TVR, Tricuspid valve replacement.
LOS, Low output syndrome. MI, Myocardial infarction.
* Prostheses not involved by infection.

Table 5. Endocarditis on Hancock Bioprostheses: Pathological Findings.

<table>
<thead>
<tr>
<th>Case No.</th>
<th>Infected bioprosthesis</th>
<th>Thrombotic vegetations*</th>
<th>Cusp tears</th>
<th>Cusp pref or.</th>
<th>Systemic septic thromboemb.</th>
<th>Dysfunction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mitral</td>
<td>Moderate</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Incompetence</td>
</tr>
<tr>
<td>2</td>
<td>Mitral</td>
<td>Mild</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Incompetence</td>
</tr>
<tr>
<td>3</td>
<td>Mitral</td>
<td>Massive</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Stenosis</td>
</tr>
<tr>
<td>4</td>
<td>Aortic</td>
<td>Massive</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Incompetence</td>
</tr>
<tr>
<td>5*</td>
<td>Aortic</td>
<td>Absent</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Incompetence</td>
</tr>
<tr>
<td>6</td>
<td>Mitral</td>
<td>Mild</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>7†</td>
<td>Mitral</td>
<td>Moderate</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Incompetence</td>
</tr>
<tr>
<td>8</td>
<td>Mitral</td>
<td>Massive</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Incompetence</td>
</tr>
<tr>
<td>9</td>
<td>Mitral</td>
<td>Moderate</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Incompetence</td>
</tr>
<tr>
<td></td>
<td>Aortic</td>
<td>Moderate</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Incompetence</td>
</tr>
</tbody>
</table>

*Calcifications of the leaflets.
†Ring abscess and prosthetic detachment.
Table 6. Causes of Late Death After Björk-Shiley valve replacement in the study group (1972-1975)*

<table>
<thead>
<tr>
<th>Causes of death</th>
<th>No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unknown</td>
<td>18</td>
</tr>
<tr>
<td>Cardiac</td>
<td>16</td>
</tr>
<tr>
<td>Congestive heart failure</td>
<td>14</td>
</tr>
<tr>
<td>Thrombosis</td>
<td>13</td>
</tr>
<tr>
<td>Sudden</td>
<td>9</td>
</tr>
<tr>
<td>Thromboembolism</td>
<td>9</td>
</tr>
<tr>
<td>Bacterial endocarditis</td>
<td>8</td>
</tr>
<tr>
<td>Unspecified</td>
<td>4</td>
</tr>
<tr>
<td>Paravalvular leak</td>
<td>2</td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>2</td>
</tr>
<tr>
<td>Multiple system failure</td>
<td>2</td>
</tr>
<tr>
<td>Mediastinitis with valve dehiscence</td>
<td>1</td>
</tr>
<tr>
<td>Dissecting aneurysm</td>
<td>1</td>
</tr>
<tr>
<td>Cardiomyopathy</td>
<td>1</td>
</tr>
<tr>
<td>Noncardiac</td>
<td>13</td>
</tr>
<tr>
<td>Total</td>
<td>97</td>
</tr>
</tbody>
</table>

*A total of 643 patients survive more than 30 days.

REFERENCES

6. 결 론

저자들은 1981년 12월 인공심장판막치환술 후 3년간에 발생한 심내막염에 의해 파괴된 인공심장판막의 세침환술을 시행하였는데, 이에 보고하고자 한다.