Some Model Solute Affinity for a Tactic p–HEMA Membranes by K_D Measurement

Eun Hee Lee, Sang Il Jeon and Mu Shik Jhon

Department of Chemistry, Korea Advanced Institute of Science and Technology, Seoul 131, Korea
(Received March 13, 1984)

Two series of membranes have been prepared by postcrosslinking highly syndiotactic and isotactic poly (2-hydroxyethyl methacrylate), P(HEMA). The crosslinker used was hexamethylene disocyanate (HMDIC). The distribution coefficients (K_D) of the model solutes such as urea (and thiourea), their derivatives, homologous alcohol series and amide series in water-swollen tactic P(HEMA) membranes at 25°C were measured. In addition, the concentration effects of acetamide and butyramide were also measured. On the basis of hydrophobic interaction and the structural factors of tactic P(HEMA) membranes, the hydrophobic adsorption of the solutes in the polymer matrix were discussed. The results showed that the more hydrophobic the solute is, the higher the K_D value is. And the polymer conformation also affects the distribution of solvents.

1. Introduction

Of particular interest in recent years have been those hydrogels derived from polymers of methacrylic esters containing at least one hydroxy group in the side chain. Since Wichterle and Lim have emphasized crosslinked poly (2-hydroxyethyl methacrylate), P(HEMA) hydrogel as biomedically important material, ample studies about the hydrogels have been accomplished.

The primary structure of homogeneous P(HEMA) hydrogel is covalently crosslinked three-dimensional network, In conjunction with covalently bonded structure, P(HEMA) chains are held together by some noncovalent forces in a secondary structure giving hydrogel, which shows its characteristic swelling stability in water. It was reported that in aqueous solution gel–solute association by hydrogen bonding seems unlikely, and the H-bonding interaction between model peptide group is small. Hence the feasibility that these bonds contribute in a considerable way to the stabilization of secondary structure of P(HEMA) hydrogel is slight. Interactions between the hydrophobic portion of the polymer, the so-called hydrophobic bonding are probably very important factor in holding P(HEMA) segments in an aqueous environment. The microsolvent addition experiments to the hydrogel seems to confirm this hypothesis.

In our experiments, we wish to report studies which support the hypothesis of hydrophobic interaction in the adsorption of water soluble solutes. We used ISO membranes and SYN membranes. Because isotactic P(HEMA) and syndiotactic P(HEMA) have different conformations, different results are expected.

The P(HEMA) membranes which have been studied previously is relatively atactic in triad tacticity. Recently, Gregonis et al. have made highly syndiotactic and isotactic P(HEMA) by U. V. photolysis and coordination polymerization, repectively, and measured the equilibrium water swelling properties of these hydrogels. From these observation, they have proposed that the stereochemistry of the polymer chain is a factor in determining swelling behavior of the hydrophilic gel

In our experiments, we compared isotactic (ISO) membranes with syndiotactic (SYN) membranes to determine the effect of the addition of urea (and thiourea) and their derivatives, and water–solute organic solvents on the hydrated stereoregular P(HEMA) hydrogels, depending on the predominant hydrophobic interaction.

It is also determined the effect of concentration of acetamide and butyramide. To test the hydrophobic adsorption, we have therefore determined the distribution coefficients. From this, will be discussed that hydrophobic adsorption increases with more hydrophobic group. And it will be also discussed that conformational differences affects the distribution
2. Experimental Methods

Materials. Highly pure HEMA monomer of low diester content (<0.02%) purchased from Hydron Laboratories Inc. was used without further purification. Hexamethylen diisocyanate (HMDIC), used as a crosslinker, was purchased from Polyscience Inc. All solutes used in these experiments were of the purest grade available. And on further purifications were done in these cases.

Synthesis of P(HEMA). Linear P(HEMA) has been synthesized in highly syndiotactic and highly isotactic configurations. Highly syndiotactic P(HEMA) was synthesized by radical polymerization at -50°C. The polymer was formed after 6 hrs. of U. V. (254 nm) photolysis of methanolic monomer solution. The initiator azobis (methyl isobutyrate) was prepared by Motimer9 previously.

Isotactic P(HEMA) was synthesized by anionic polymerization. To prepare highly isotactic P(HEMA), blocking group benzyoxymethyl methacrylate (BEMA) was used. The anionic initiator for BEMA polymerization is n-butyllithium and copper iodide complex Li+(nBu)2Cu-. Using this reagent, isotactic P(BEMA) was produced. The hydrolysis process10 of isotactic P(BEMA) was somewhat different from Gregonis et al.'s.11

Membrane Preparation. After dissolving the vacuum dried tactic P(HEMA) in dry N,N-dimethylacetamide thoroughly, desired amount of crosslinking agent, HMDIC (2.5 mole %), and the catalyst (dibutyltin dilaurate: 6.6×10^-5 mol/l) were mixed well with it. The mixture was poured onto a polypropylene mold. Crosslinking was carried out in a closed oven under dry nitrogen atmosphere for 24 hrs. And then, the solvent was slowly evaporated in a stream of clean air for 24 hrs. The polypropylene sheet to which the dried membrane stuck was placed under vacuum for 10 hrs. and dipped into distilled water for 12 hrs. This was partially dehydrated under vacuum for 5 hrs., and then, membrane was slowly drawn apart from polypropylene sheet. All the membranes were equilibrated in distilled water for at least one month during which the water was frequently replaced.

Distribution Coefficient. The distribution coefficient is defined as the ratio of the concentration of a solute in the membrane phase to its concentration in the solution phase, the two phases being in equilibrium. In our method, the distribution coefficient is determined by using the two-step sorption and desorption technique12 because of good reproductibility. Here, the distribution coefficient, K_{D_2}, is defined as

$$K_{D_2} = \frac{G_2}{G_m} \left(\frac{C_{S_2}}{C_{S_1} - C_{S_1}} \right)$$

where G_2, G_m, C_{S_1}, and C_{S_2} are the weight of the surrounding solution, the weight of the swollen membrane, the concentration of the solute in the surrounding solution after sorption, and that after desorption, respectively.

This use of K_{D_2} differs slightly from the conventional one since the concentration in the membrane is molarity whereas that in surrounding medium is molarity.13

Presoaked membranes at 25°C were surface dried between damp filter paper and placed in the stoppered bottle containing known weight of solution (5 ml = 4.95-4.89 g according to the model). The stoppered bottle was left in a constant temperature (25°C) bath for two days. After reaching an equilibrium then removed, surface dried and placed in a bottle containing triply distilled water for two days at 25°C. Form first equilibrium we obtained C_3, and from second equilibrium C_2 was obtained. The sample was analyzed with a differential refractometer.

The relationship between the actual concentration of the solution and the refractive index of the solution relative to pure water determined by the differential refractometer shows $\Delta n = K\Delta C$. Therefore, the relative refractive index was substituted for the actual concentrations in equation (1) to obtain equation (2).

$$K_{D_2} = \frac{G_2}{G_m} \left(\frac{C_{S_2}}{C_{S_1} - C_{S_1}} \right) = \frac{G_2}{G_m} \left(\frac{\Delta d_2}{\Delta d_1 - \Delta d_2} \right)$$

where Δd_1, Δd_2 are the reading of differential refractometer for C_{S_1} and C_{S_2}.

3. Results and Discussion

The distribution coefficient (K_{D_2}) of homologous alcohol series, amide series, and ureas (and thioureas) and their derivatives are plotted against the number of carbon atoms (n) as shown in Figure 1 to 3. All of them show that there is an affinity for less polar aliphatic solutes which suggests that this effect depends on the number of C atoms.

Figure 1 shows that there is an affinity order for homologous alcohol series. The order of the solutes in K_{D_2} magnitude is as follows:

1-Pentanol > 1-Butanol > 1-Propanol > 1-Ethanol

the more hydrophobic group the solute has, the higher the interaction is. With regard to homologous aliphatic series, a regular pattern is apparent (Traube's rule).14

In the amide series, the same pattern is obtained (see Figure 2).

Formamide < Acetamide < Propionamide < Butyramide

Above results are also consistent with alcohol series. From our results, it is reasonable that alkyl groups enhance the affinity. The affinity of the tactic P(HEMA) hydrogel for homologous alcohol solutes and amide solutes, which is due to the CH₂ groups, strongly suggest a hydrophobic interaction. Solutes which decrease the solvent power of water will induce the creation of additional bonding between hydrophobic residues in the polymer network. Hyrophobicity is a controlling on the preferential sorption of alcohol (and amide) solutes in the tactic P(HEMA) hydrogel in the water-containing system: the magnitude of this effect increases with decreasing polarity of the compound sorbed as seen in
Figure 1. The distribution coefficient of alcohol solutes in HEMA membranes as a function of carbon number at 25°C; (□), for the isotactic precursor; (○), for the syndiotactic precursor.

Figure 2. The distribution coefficient of amide solutes in HEMA membranes as a function of carbon number at 25°C; (□), for the isotactic precursor; (○), for the syndiotactic precursor.

Figure 1 and Figure 2.

For all solutes, ISO membranes have higher distribution coefficient values than SYN membranes. This difference can be explained in terms of Russell et al., s15 CPKR space-filling molecular models. The conformational difference between isotactic P(HEMA) and syndiotactic P(HEMA) is that the hydrophilic polar groups for isotactic P(HEMA) are all displaced outward from the helical backbone, giving a helix conformation which has a hydrophobic inner surface and hydrophilic outer surface. This is not the case for syndiotactic P(HEMA), where polar and apolar groups are interspersed along the helix. This may be partly account for the differences observed in the swelling behavior of isotactic and syndiotactic P (HEMA). The membranes of isotactic precursor are more hydrated compared to the ones of its syndiotactic counterpart. From above report, it is apparent that SYN membrane is more hydrophobic than ISO. And then it is expected that in the same solute, SYN membrane would have higher distribution coefficient than membrane. But in our previous reports the distribution coefficient is linearly dependent to the equilibrium water content in membranes at 25°C.19,16 The linear correlation indicates that the partition of the solutes also occurs into the water-containing region which is all interconnected. As ISO membranes are more hydrated than SYN membranes, it is suggested that the hydrogen bonding effect is significant between solutes and polymer matrix. In our experiments, SYN membranes, hydrophobic nature never overcomes ISO membranes' water content effect.

In Figure 3, in ureas (and thioureas) one can see that an affinity is increased as follows:

Urea < N-Methylurea < N-Ethylurea

Thiourea < N-Methylthiourea < N,N'-Dimethylthiourea < N,N'-Diethylthiourea

Here the affinity is increased by N-methylation. A higher K_D value is found for the N-ethyl derivative in comparison with the N-methyl derivative, and N,N'-methylation has more hydrophobic nature than N-ethylation. It is apparent that, within the concentration range studied, substitution...
of methyl groups for hydrogen atoms on urea and thiourea fits reasonably well in terms of a hydrophobic mechanism. From Figure 3, one can see that thiourea has higher K_{D_1} value than urea. This is due to the higher affinity to the membrane for thiourea than urea.

In Figure 4 and 5, one can see that the K_{D_1} values show a minimum as concentration increases. From our previous report, it is suggested that water content is varied with concentration. In these cases, hydrogen-bonding between solutes and tactic P(HEMA) hydrogel must be an important effect. In the same membrane, butyramide has higher K_{D_1} value than acetamide over a concentration range of 0.176-0.8M. Solutes' hydrophobic nature is a major effect in partitioning polymer matrix. In the same solute, ISO membranes have higher K_{D_1} value than SYN membranes. In this case, gel-solute association by the hydrogen bonding is a major effect.

4. Conclusion

The distribution coefficients for the two series of tactic P(HEMA) membranes with the crosslinker, HMDIC, are obtained.

Distribution coefficients were measured for urea (and thiourea) and its derivatives and homologous alcohol series, as well as amide series with the water-swollen tactic P-(HEMA) membranes. Distribution coefficient data of tactic P(HEMA) membranes increase with the increase in hydrophobic groups. From this, it is assumed that the more hydrophobic the solute is, the higher the polymer-solute affinity is. ISO membranes show the higher K_{D_1} values than SYN membranes for all solutes concentration ranges. This trend is consistent with the water contents of water-swollen tactic P(HEMA) membranes.

References

(2) O. Wichterle and D. Lin, Nature, 185, 117 (1960).