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A NOTE ON WITT RINGS OF 2-FOLD FULL RINGS

In-Ho Cro AND JAE-GYEOM KiMm

1. Introduction

D.K. Harrison [5] has shown that if R and S are fields of characteristic
different from 2, then two Witt rings W(R) and W(S) are isomorphic if and
only if W(R)/I(R)® and W(S)/I(S)* are isomorphic where I(R) and I(S)
denote the fundamental ideals of W(R) and W(S) respectively. In [1], J.K.
Arason and A. Pfister proved a corresponding result when the characteristics of
R and S are 2, and, in {97, K.I. Mandelberg proved the result when R and S
are commutative semi-local rings having 2 a unit. In this paper, we prove the
result when R and S are 2-fold full rings.

Throughout this paper, unless otherwise specified, we assume that R is a com-
mutative ring having 2 a unit. A quadratic space (V, B, ¢) over R is a finitely
generated projective R-module V with a symmetric bilinear mapping B: VX V—
R which is nondegenerate (i.c., the natural mapping V-»Homg (V,R) induced
by B is an isomorphism), and with a quadratic mapping &: V—R such that B(z,
¥ = (@lz+y) —d(2) —d(¥)) /2 and ¢(ra) =r2(2) for all z,¥ in V and r in R.
We denote the group of multiplicative units of R by U(R). If (V, B, ¢) is a free
rank » quadratic space over R with an orthogonal basis {z), -, 2}, we will write
<y, ey a,> for(V, B, ¢) where the w;=¢(2;) are in UUV(R), and denote the
space by the table [a;] where ;= B(2;, ;). In the case 2=2 and Blay, a5) =
1/2, we reserve the notation [ayy, as for the space.

2. The quotients I(R)/I(R)* and U(R) /U(R)?

Let G be a muitiplicative abelian group of exponent 2 with identity e. We will
write Z[G] for its group ring and {g} for the image in Z[G] of an element g of
G. Let M be the kernel of the ring homomorphism Z[{G] —>Z —->Z/2Z defined
by sending each group element to 1 and reducing mod 2Z. Then M consists of
clements of the form Xn;{g;} with Xln; even, and is generated additively by
the elements {e} 4 {g}. We define d,: M-—G by

Znglai-——> ([1a") - g=
where g&G. It is clear that d, is a group homomorphisn:. If K is an ideal of
ZTG] contained in M we will write A7 for the ideals M/ K in Z'G]/K.

LemMA 2.1. Let K be an ideal of Z[ (5] contained in M with {e} 1 {g} in K and
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dg(K) =e. Then d; induces an isomorphism M|M*—>G of groups with the

inverse isomorphism is given by b —> cl({e} 4 {bg}) where cl denotes the can-
nonical map M—>M—>M/M?2.

Proof. It is just [9, Lemma 3.1, p.524].

A commutative ring R having 2 a unit is called #-fold full [7, p.149] if for
every nX3 matrix A="[a;;] with unimodular rows there is an element = in R
such that

(41
1) Vo
A{ w | =
\ w2/

\ vn)
where vy, v, ¢+, v, are units. Thus an »-fold full ring is k-fold full for 1<2<n.

We now specialize to the case where G is the group U(R)/U(R)? for an 1-fold
full ring R. A cap will be used to indicate reduction mod U(R)?2

THEOREM 2.2. Let R be an 1-fold full ring. Then there is an abelian group
isomorphism from I(R) [I(R)? onto U(R)[U(R)? which is given by [<ay, -, a,>]
PN
+I(RY2—>([14) - (—1)* with inverse &—>[<1, —a>]--I(R)2

Proof. Let G=UR)/UR)? then the ring homomorphism which takes

{a}i—>[<{a>] is a surjection of Z[G] onto W(R) [7, p.151] whose kernel we
A N
denote by K. The ideal K is generated by {1} +{=1} and the elements of the form
32 (@) = (63) with <a, -+, a,>= by, b, [7, Proposition 1IL2, p.152].
We now wish to apply Lemma 2.1 to W(R)=Z[G]/K, with g:—/i. Certainly
A A PN
M+ {gt={1} +{-1} is in M. Furthermore,
(S (1@ — 1) = (8 - (fla)=1.

Thus K is contained in M. Hence Lemma 2.1 applies and M/M?2 is isomorphic to

G. The result now follows by composing the explicit isomorphism of Lemma 2.1
with the induced isomorphism of M/M?2-—>I(R)/I(R)? given by

cl(Zni{g})— (Dn[<g >3 +I(R)™

3. The Clifford algebra

Let @5(R) be the set of isomorphism classes of (Z,—) graded separable R-al-
gebras which are projective R-modules of rank two. Let L be an abelian group
homomorphism from Brauer-Wall group BW(R) of R onto Q2(R) given by L(A)
=class A4 [11, Theorem 7.10, p.490 ]. When A is a graded algebra we will
write |A| for the algebra considered as an ungraded algebra.
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LEMMA 3.1. Let A be a free rank 4 central separable algebra over a commutative
ring R and S a commutative R-algebra. I f f is an S-algebra isomorphism of
ARS to My(S) we will write N(f,8) for the map A-—>S defined by N(f,S)
(@) =determinant (f(aR1)).

Then:

(1) The image of N (f,S) lies in R and does not depend on the choice of
S oand S.

(2) N(f, 8) defines a quadratic form on A.

Proof. (1) is just [4, Proposition 3.1, p.237], and (2) follows by a routine
calculation with 2X2 matrices.

Under the hypotheses of the Lemma, we will write N:A— >R for the quadratic
form N(f, §), and refer to it as the reduced norm.

COROLLARY 3.2. Let [a,b] be a non-degenerate quadratic space over R. Then
the reduced norm makes |Cliff ([a,b])| into a quadratic space isometric to [ —a,
—b]L[1, ab). If R is 1-fold full and Cliff ([a, 8]) =Cliff ([¢,d]) in BW(R),
it follows that [—a, —b]L[1, ab]=[ - ¢, —dl1[1,ed].

Proof. By [6, Lemma 2.1 (ii)], Cliff ([a,8]) is the rank 4 R-algebra
C=RORzDRyORzy with Co=RMPRzy, Ci=RxDRy, z*=aq, y?=b, ay+yzr=1,
and CC is the rank 2 subalgebra RDRry. But then, (zy)’=z(yz)y=21—ay)y
=xy—ab, hence the free rank 2 R-algebra S=RMRz with 22=2—ab is Galois
(11, Corollary 7.4, p.487].

We now define an R-module homomorphism f: C—>M.(S) by letting

. 0a 0 2 1—-2 O
Z) = N 1, ==
5@ [1 oJ 7@ t(l—w)/a 0 0 o
Then f is an R-algebra homomorphism just by checking the identities

1) =r@ s, sw=[r Y, sl !

], S =1, and flay) = [

J , and

S@I@ @@ =[} )
Now let f*:CRS—>M,(S) be the S-algebra homomorphism induced by f. Since
CRS and M,(S) are free central separable S-algebras of the same rank by [2,
Corollary 3.4, p.376], f* is an isomorphism. Now by directly computing the
norm of Lemma 3.1 (1) on the R-basis {x, 3, 1, 2y} we get the quadratic
space [—a, —b&]1[1, ab].

The final conclusion now follows from 19, Lemma 2.3, p.518] and [6, Lemma
1.1] together with the uniqueness in Lerama 3. 1.

THEOREM 3.3. Let (M, B, ¢) and (N, B, ¢') be free quadratic spaces of rank
2 over an 1-fold full ring R. Then M is isometric to N if and only if
Cliff (M)=CL#(N) in BW(R).
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Proof. Clearly, only the sufficiency need be proved. By [6, Lemma 1.1], we
may assume (M, B, ¢)=I[a, 6] and (N, B, ¢')=[c,d].

As noted in the proof of Corollary 3.2 above, L(CliffM) is represented by
the free rank 2 R-algebra S=R®Rz with 2’=z-—ab, which is a Galois extension
of R with a 2 element Galois group by |11, Corollary 7.4, p.487]. Then, since
(1—2)2=(1—2) —ab, S has a unique non-trivial antomorphism j with j(2)=
1—z. Then defining 1(w) =wj(w) for any w in S we define an S'=R valued
quadratic form 2 on S. Computing A on the basis {1, 2z} we see this form is
isometric to [1, ab}]. Therefore, since L(CliffM)=L(ClifN), we have
M1, ab]=[1, cd]. Then, by Corollary 3.2 and [10, Theorem 4.3, p.545],
[—a, —&]=[—c, —d]. It then follows that M=N.

COROLLARY 3.4. Let R be an 1-fold full ring. Then CLE{I(R)H=1 in
BWR). If (M, B, ¢) and (N, B', ¢') are free quadratic spaces of rank 2
over R with M=N in W(R)/I(R)3, then M=N.

Proof. Since I(R) is generated additively by the forms <{1, a>, I(R)® must
be generated additively by the forms <{1. a>> <1, &> <{l, ¢>. But

Chff (<1, a> <1,8> <1, ¢>>) =ClLiff (<(1, a, b, ab>) - Clifi (e, ac, be, abe’>)

2-acl/?, 2-bc/2, 2-abc/2>)

(=2t

=] in BW(R),
by [3, Lemma 3.1] and [9, Lemma 2.9, p.521]. Thus CLff(ZJ(R)®) =1 in
BW (R). The last assertion now follows from Theorem 3.3.

4. Main theorem
From now on we will write d for d2y and any of its induced maps.

THEOREM 4.1. Let R and S be 2-fold full rings. Then W(R)/I(R)? is
isomorphic to W(S)/I1(S)3 if and only if W(R) is isomorphic to W (S).

Proof. The sufficiency is obvious, since I(R) and I(S) are the unique prime
ideals of W(R) and WI(S) containing 2 [7, p.156]-

Now let f be a ring isomorphism of W(R)/I(R)? onto W(S)/I(S)®. By the
characterization of I(R) and I(S) mentioned above, f induces an isomorphism of
I{R)[I(R)? onto I(S)/I(S)% and consequently an isomorphism of I(R)/I(R)? onto
1(8)/1(S)% Then by Theorem 2.2 we get an isomorphism f':U(R)/U(R)*—>
I(R) [I(R)2——I(S) [ I(S)?—>U(S) /U(S)?, with

a—>[1, —@p]+HIR) S ([, —ap]+IR)®)+1(5)*
——>d (F([1, —a]+IR)%)).

Here if we write G; for U(R)/U(R)? and G, for U(S)/U(S)? then f’ induces

a ring isomorphism of Z[Gi]—->Z[G2i. Now, by [7, p.156] this induces a
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ring homomorphism f*: W(R) —> W(S), if we can show @), £ (ii)>::
d, fi} and {f' (@), [ (B)>={ f (&), £'(d)y when {a, by={c,dy. In fact, this
actually proves f* is an tsomorphism, since the same argument applied to (f')1
produces (f*)-1,

Now,

S (D =d( ([, DIHIR)E)
=AU DIHIRD) +7 (Y] +HIR))
=d ([ T+HI(S) 34 [K1] +-1(S)?)
=d([<1, 1DI+1(8)?)
PN
w
Thus the first assertion is proved.

Let z; and 2, be in I(R). Then we may write f (@;+1(R)%) =y, 4+1(S)3, where
each ¥;, i=1, 2, is in I(S). If we write ¢;=d(¥), then {1, —¢p A-I(8) 2=y,
1(8)? since both sides have the same image under d:7(S) /1(3) > U(S)/US)*
Therefore we can write Y=L, —e¢p]4 2 for some z; in I(8)2 Now,

S @12t IR = f (21 +1(R)®) - f (xy+ I (R) %
= +108)%) - (y,-+-1(S8)?)
= ([ =] 2+ 189 - ([, —ed |+ 2 +1(8)%)
=1, —ep] [0, —ed] +1(S8)%.

Now, we substitute x;=[{], —a&) | and z,=[(1, —b>] into this last formular.
Then f([{1, —a>]-[4, “OIHIR)D=[, —f (@)>]-[<1, —f 6)>1+1(8)*,
since &;=f"(4) and &= f"(b) by the definition of f’. But {a, by={c, dy implics

A, =ap{l, ==, abyl{—a, —by
=1, ed) 1 {~¢c, —d>
=1, =1, —d>.

Thus
(<L F1@F O3+ S @, ~F )]
=L =7 @1 [<1, —f7 (6))] mod (8)3
=KL = @1, —f @)>] mod I({8)?

=L S@F )] @, =" (d>] mod 1(S)<.
And this congruence becomes [{f’(4), SOOI @, £ (d>] (mod 1(8)%).
Then, by Corollary 3.4, {f'(a), f* @) ={f"(e), f'(d)> which is the required

conclusion.
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