A NOTE ON WITT RINGS OF 2-FOLD FULL RINGS

IN-HO CHO AND JAE-GYEOM KIM

1. Introduction

D. K. Harrison [5] has shown that if R and S are fields of characteristic different from 2, then two Witt rings W(R) and W(S) are isomorphic if and only if $W(R)/I(R)^3$ and $W(S)/I(S)^3$ are isomorphic where I(R) and I(S) denote the fundamental ideals of W(R) and W(S) respectively. In [1], J. K. Arason and A. Pfister proved a corresponding result when the characteristics of R and S are 2, and, in [9], K. I. Mandelberg proved the result when R and S are commutative semi-local rings having 2 a unit. In this paper, we prove the result when R and S are 2-fold full rings.

Throughout this paper, unless otherwise specified, we assume that R is a commutative ring having 2 a unit. A quadratic space (V, B, ϕ) over R is a finitely generated projective R-module V with a symmetric bilinear mapping $B\colon V\times V\to R$ which is nondegenerate (i.e., the natural mapping $V\to \operatorname{Hom}_R(V,R)$ induced by B is an isomorphism), and with a quadratic mapping $\phi\colon V\to R$ such that $B(x,y)=(\phi(x+y)-\phi(x)-\phi(y))/2$ and $\phi(rx)=r^2\phi(x)$ for all x,y in V and r in R. We denote the group of multiplicative units of R by U(R). If (V,B,ϕ) is a free rank n quadratic space over R with an orthogonal basis $\{x_1,\dots,x_n\}$, we will write $\langle a_1,\dots,a_n\rangle$ for (V,B,ϕ) where the $a_i=\phi(x_i)$ are in U(R), and denote the space by the table $[a_{ij}]$ where $a_{ij}=B(x_i,x_j)$. In the case n=2 and $B(x_1,x_2)=1/2$, we reserve the notation $[a_{11},a_{22}]$ for the space.

2. The quotients $I(R)/I(R)^2$ and $U(R)/U(R)^2$

Let G be a multiplicative abelian group of exponent 2 with identity e. We will write Z[G] for its group ring and $\{g\}$ for the image in Z[G] of an element g of G. Let M be the kernel of the ring homomorphism $Z[G] \longrightarrow Z \longrightarrow Z/2Z$ defined by sending each group element to 1 and reducing mod 2Z. Then M consists of elements of the form $\sum n_i\{g_i\}$ with $\sum n_i$ even, and is generated additively by the elements $\{e\} + \{g\}$. We define $d_g: M \longrightarrow G$ by

$$\sum n_i \{a_i\} \longmapsto (\prod a_i^{n_i}) \cdot g^{\sum n_i/2}$$

where $g \in G$. It is clear that d_g is a group homomorphism. If K is an ideal of $\mathbb{Z}[G]$ contained in M we will write \overline{M} for the ideals M/K in $\mathbb{Z}[G]/K$.

LEMMA 2.1. Let K be an ideal of Z[G] contained in M with $\{e\}+\{g\}$ in K and

 $d_g(K) = e$. Then d_g induces an isomorphism $\overline{M}/\overline{M^2} \longrightarrow G$ of groups with the inverse isomorphism is given by $b \longrightarrow cl(\{e\} + \{bg\})$ where cl denotes the cannonical map $M \longrightarrow \overline{M} \longrightarrow \overline{M}/\overline{M^2}$.

Proof. It is just [9, Lemma 3.1, p. 524].

A commutative ring R having 2 a unit is called n-fold full [7, p. 149] if for every $n \times 3$ matrix $A = [a_{ij}]$ with unimodular rows there is an element w in R such that

$$Aigg(egin{array}{c} 1 \ w \ w^2 igg) = egin{pmatrix} v_1 \ v_2 \ dots \ dots \ v_n \end{pmatrix}$$

where v_1, v_2, \dots, v_n are units. Thus an *n*-fold full ring is *k*-fold full for $1 \le k \le n$. We now specialize to the case where G is the group $U(R)/U(R)^2$ for an 1-fold full ring R. A cap will be used to indicate reduction mod $U(R)^2$

THEOREM 2.2. Let R be an 1-fold full ring. Then there is an abelian group isomorphism from $I(R)/I(R)^2$ onto $U(R)/U(R)^2$ which is given by $[\langle a_1, \dots, a_n \rangle] + I(R)^2 \longrightarrow (\prod \hat{a_i}) \cdot (-1)^n$ with inverse $\hat{a_i} \longrightarrow [\langle 1, -a \rangle] + I(R)^2$.

Proof. Let $G=U(R)/U(R)^2$, then the ring homomorphism which takes $\{\hat{a}\} \longmapsto [<a>\}$ is a surjection of $\mathbf{Z}[G]$ onto W(R) [7, p. 151] whose kernel we denote by K. The ideal K is generated by $\{\hat{1}\} + \{\widehat{-1}\}$ and the elements of the form $\sum_{i=1}^m (\{\hat{a}_i\} - \{\hat{b}_i\})$ with $<a_1, \dots, a_m> \approx <b_1, \dots, b_m>$ [7, Proposition III. 2, p. 152]. We now wish to apply Lemma 2.1 to $W(R) \approx \mathbf{Z}[G]/K$, with $g=\widehat{-1}$. Certainly $\{\hat{1}\} + \{g\} = \{\hat{1}\} + \{\widehat{-1}\}$ is in M. Furthermore,

$$d_{\widehat{1}}(\sum_{i=1}^{m} (\{\hat{a}_i\} - \{\hat{b}_i\})) = (\prod_{i=1}^{m} \hat{a}_i) \cdot (\prod_{i=1}^{m} \hat{b}_i)^{-1} = \hat{1}.$$

Thus K is contained in M. Hence Lemma 2.1 applies and $\overline{M}/\overline{M}^2$ is isomorphic to G. The result now follows by composing the explicit isomorphism of Lemma 2.1 with the induced isomorphism of $\overline{M}/\overline{M}^2 \longrightarrow I(R)/I(R)^2$ given by

$$\operatorname{cl}(\sum n_i\{g_i\}) \longmapsto (\sum n_i[\langle g_i \rangle]) + I(R)^2.$$

3. The Clifford algebra

Let $Q_2(R)$ be the set of isomorphism classes of (\mathbf{Z}_2-) graded separable R-algebras which are projective R-modules of rank two. Let L be an abelian group homomorphism from Brauer-Wall group BW(R) of R onto $Q_2(R)$ given by L(A) =class A^{A_o} [11, Theorem 7.10, p.490]. When A is a graded algebra we will write |A| for the algebra considered as an ungraded algebra.

LEMMA 3.1. Let A be a free rank 4 central separable algebra over a commutative ring R and S a commutative R-algebra. If f is an S-algebra isomorphism of $A \otimes S$ to $M_2(S)$ we will write N(f,S) for the map $A \longrightarrow S$ defined by N(f,S) (a) = determinant $(f(a \otimes 1))$. Then:

- (1) The image of N (f,S) lies in R and does not depend on the choice of f and S.
 - (2) N(f, S) defines a quadratic form on A.

Proof. (1) is just [4, Proposition 3.1, p. 237], and (2) follows by a routine calculation with 2×2 matrices.

Under the hypotheses of the Lemma, we will write $N:A\longrightarrow R$ for the quadratic form N(f, S), and refer to it as the reduced norm.

COROLLARY 3.2. Let [a,b] be a non-degenerate quadratic space over R. Then the reduced norm makes |Cliff([a,b])| into a quadratic space isometric to $[-a,-b] \perp [1, ab]$. If R is 1-fold full and Cliff([a,b]) = Cliff([c,d]) in BW(R), it follows that $[-a, -b] \perp [1, ab] = [-c, -d] \perp [1, cd]$.

Proof. By [6, Lemma 2.1 (iii)], Cliff ([a,b]) is the rank 4 R-algebra $C=R\oplus Rx\oplus Ry\oplus Rxy$ with $C_0=R\oplus Rxy$, $C_1=Rx\oplus Ry$, $x^2=a$, $y^2=b$, xy+yx=1, and C^{C_0} is the rank 2 subalgebra $R\oplus Rxy$. But then, $(xy)^2=x(yx)y=x(1-xy)y=xy-ab$, hence the free rank 2 R-algebra $S=R\oplus Rz$ with $z^2=z-ab$ is Galois [11, Corollary 7.4, p.487].

We now define an R-module homomorphism $f: C \longrightarrow M_2(S)$ by letting

$$f(x) = \begin{bmatrix} 0 & a \\ 1 & 0 \end{bmatrix}, \ f(y) = \begin{bmatrix} 0 & z \\ (1-z)/a & 0 \end{bmatrix}, \ f(1) = 1, \ \text{and} \ f(xy) = \begin{bmatrix} 1-z & 0 \\ 0 & z \end{bmatrix}.$$

Then f is an R-algebra homomorphism just by checking the identities

$$f(xy) = f(x) f(y), \ f(x)^2 = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}, \ f(y)^2 = \begin{bmatrix} b & 0 \\ 0 & b \end{bmatrix}, \text{ and}$$
$$f(x)f(y) + f(y)f(x) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

Now let $f^*: C \otimes S \longrightarrow M_2(S)$ be the S-algebra homomorphism induced by f. Since $C \otimes S$ and $M_2(S)$ are free central separable S-algebras of the same rank by [2, Corollary 3.4, p.376], f^* is an isomorphism. Now by directly computing the norm of Lemma 3.1 (1) on the R-basis $\{x, y, 1, xy\}$ we get the quadratic space $[-a, -b] \perp [1, ab]$.

The final conclusion now follows from [9, Lemma 2.3, p.518] and [6, Lemma 1.1] together with the uniqueness in Lemma 3.1.

THEOREM 3.3. Let (M, B, ϕ) and (N, B', ϕ') be free quadratic spaces of rank 2 over an 1-fold full ring R. Then M is isometric to N if and only if Cliff(M) = Cliff(N) in BW(R).

Proof. Clearly, only the sufficiency need be proved. By [6, Lemma 1.1], we may assume $(M, B, \phi) = [a, b]$ and $(N, B', \phi') = [c, d]$.

As noted in the proof of Corollary 3.2 above, L(CliffM) is represented by the free rank 2 R-algebra $S=R\oplus Rz$ with $z^2=z-ab$, which is a Galois extension of R with a 2 element Galois group by [11, Corollary 7.4, p. 487]. Then, since $(1-z)^2=(1-z)-ab$, S has a unique non-trivial antomorphism j with j(z)=1-z. Then defining $\lambda(w)=wj(w)$ for any w in S we define an $S^j=R$ valued quadratic form λ on S. Computing λ on the basis $\{1, z\}$ we see this form is isometric to [1, ab]. Therefore, since L(CliffM)=L(CliffN), we have $[1, ab] \simeq [1, cd]$. Then, by Corollary 3.2 and [10, Theorem 4.3, p. 545], $[-a, -b] \simeq [-c, -d]$. It then follows that $M \simeq N$.

COROLLARY 3.4. Let R be an 1-fold full ring. Then $Cliff(I(R)^3)=1$ in BW(R). If (M, B, ϕ) and (N, B', ϕ') are free quadratic spaces of rank 2 over R with M=N in $W(R)/I(R)^3$, then $M \simeq N$.

Proof. Since I(R) is generated additively by the forms <1, a>, $I(R)^3$ must be generated additively by the forms <1, a><1, b><1, c>. But

by [3, Lemma 3.1] and [9, Lemma 2.9, p.521]. Thus $Cliff(I(R)^3)=1$ in BW(R). The last assertion now follows from Theorem 3.3.

4. Main theorem

From now on we will write d for $d \ge 1$ and any of its induced maps.

THEOREM 4.1. Let R and S be 2-fold full rings. Then $W(R)/I(R)^3$ is isomorphic to $W(S)/I(S)^3$ if and only if W(R) is isomorphic to W(S).

Proof. The sufficiency is obvious, since I(R) and I(S) are the unique prime ideals of W(R) and W(S) containing 2 [7, p. 156].

Now let f be a ring isomorphism of $W(R)/I(R)^3$ onto $W(S)/I(S)^3$. By the characterization of I(R) and I(S) mentioned above, f induces an isomorphism of $I(R)/I(R)^3$ onto $I(S)/I(S)^3$ and consequently an isomorphism of $I(R)/I(R)^2$ onto $I(S)/I(S)^2$. Then by Theorem 2.2 we get an isomorphism $f':U(R)/U(R)^2 \longrightarrow I(R)/I(R)^2 \longrightarrow I(S)/I(S)^2 \longrightarrow U(S)/U(S)^2$, with

$$\hat{a} \longrightarrow [\langle 1, -a \rangle] + I(R)^2 \longrightarrow f([\langle 1, -a \rangle] + I(R)^3) + I(S)^2$$

$$\longrightarrow d(f([\langle 1, -a \rangle] + I(R)^3)).$$

Here if we write G_1 for $U(R)/U(R)^2$ and G_2 for $U(S)/U(S)^2$, then f' induces a ring isomorphism of $\mathbf{Z}[G_1] \longrightarrow \mathbf{Z}[G_2]$. Now, by [7, p.156] this induces a

ring homomorphism $f^*: W(R) \longrightarrow W(S)$, if we can show $\langle f'(\hat{1}), f'(\hat{-1}) \rangle \simeq \langle \hat{1}, \widehat{-1} \rangle$ and $\langle f'(\hat{a}), f'(\hat{b}) \rangle \simeq \langle f'(\hat{c}), f'(\hat{d}) \rangle$ when $\langle a, b \rangle \simeq \langle c, d \rangle$. In fact, this actually proves f^* is an isomorphism, since the same argument applied to $(f')^{-1}$ produces $(f^*)^{-1}$.

Now,

$$f'(\widehat{-1}) = d(f([\langle 1, 1 \rangle] + I(R)^3))$$

$$= d(f([\langle 1 \rangle] + I(R)^3) + f([\langle 1 \rangle] + I(R)^3))$$

$$= d([\langle 1 \rangle] + I(S)^3 + [\langle 1 \rangle] + I(S)^3)$$

$$= d([\langle 1, 1 \rangle] + I(S)^3)$$

$$= \widehat{-1}.$$

Thus the first assertion is proved.

Let x_1 and x_2 be in I(R). Then we may write $f(x_i+I(R)^3)=y_i+I(S)^3$, where each y_i , i=1, 2, is in I(S). If we write $\hat{c}_i=\operatorname{d}(y_i)$, then $\langle 1, -c_i \rangle + I(S)^2 = y_i + I(S)^2$ since both sides have the same image under $\operatorname{d}:I(S)/I(S)^2 \longrightarrow U(S)/U(S)^2$. Therefore we can write $y_i=\lceil \langle 1, -c_i \rangle \rceil + z_i$ for some z_i in $I(S)^2$. Now,

$$\begin{split} f(x_1 \cdot x_2 + I(R)^3) &= f(x_1 + I(R)^3) \cdot f(x_2 + I(R)^3) \\ &= (y_1 + I(S)^3) \cdot (y_2 + I(S)^3) \\ &= ([\langle 1, -c_1 \rangle] + z_1 + I(S)^3) \cdot ([\langle 1, -c_2 \rangle] + z_2 + I(S)^3) \\ &= [\langle 1, -c_1 \rangle] \cdot [\langle 1, -c_2 \rangle] + I(S)^3. \end{split}$$

Now, we substitute $x_1 = [\langle 1, -a \rangle]$ and $x_2 = [\langle 1, -b \rangle]$ into this last formular. Then $f([\langle 1, -a \rangle] \cdot [\langle 1, -b \rangle] + I(R)^3) = [\langle 1, -f'(\hat{a}) \rangle] \cdot [\langle 1, -f'(\hat{b}) \rangle] + I(S)^3$, since $\hat{c}_1 = f'(\hat{a})$ and $\hat{c}_2 = f'(\hat{b})$ by the definition of f'. But $\langle a, b \rangle \simeq \langle c, d \rangle$ implies

$$\langle 1, -a \rangle \langle 1, -b \rangle = \langle 1, ab \rangle \perp \langle -a, -b \rangle
= \langle 1, cd \rangle \perp \langle -c, -d \rangle
= \langle 1, -c \rangle \perp \langle 1, -d \rangle.$$

Thus

And this congruence becomes $[\langle f'(\hat{a}), f'(\hat{b}) \rangle] \equiv [\langle f'(\hat{c}), f'(\hat{d}) \rangle] \pmod{I(S)^{v}}$. Then, by Corollary 3.4, $\langle f'(a), f'(b) \rangle \simeq \langle f'(c), f'(d) \rangle$ which is the required conclusion.

References

- J. K. Arason and A. Pfister, Beweis des Krullschen Durchschnittssatzes für den Wittring, Invent. Math. 12 (1971), 173-176.
- M. Auslander and O. Goldman, The Brauer group of a commutative ring, Trans. Amer. Math. Soc. 97 (1960), 367-409.

- 3. H. Bass, Lectures on topics in algebraic K-theory, Tata Institute, 1967.
- 4. S. Endo and Y. Watanabe, On separable algebras over a commutative ring, Osaka J. Math. 4 (1969), 233-242.
- 5. D.K. Harrison, Witt rings, Lecture Notes, University of Kentucky, Lexington, 1970.
- 6. J.G. Kim. Classification of Clifford algebras of free quadratic spaces over full rings, Bull. Korean Math. Soc. 22, No.1 (1985), 11-15.
- 7. B. Kirkwood and B.R. McDonald, The Witt ring of a full ring, J. Algebra 64 (1980), 148-166.
- 8. M. Knebusch, A. Rosenberg, and R. Ware, Structure of Witt rings and quotients of abelian group rings, Amer. J. Math. 94 (1972), 119-155.
- 9. K.I. Mandelberg, A note on quadratic forms over arbitrary semi-local rings, Can. J. Math. 27 (1975), 513-527.
- 10. B.R. McDonald and B. Hershberger (Kirkwood), The orthogonal group over a full ring, J. Algebra 51 (1978), 536-549.
- 11. C. Small, The Brauer-Wall group of a commutative ring, Trans. Amer. Math. Soc. 156 (1971), 435-491.

Korea University Seoul 132, Korea