Chemical Reactions in Surfactant Solution (I). Substituent Effects of 2-Alkylbenzimidazolide ions on Dephosphorylation in CTABr Solutions

계면활성제 용액속에서의 화학반응 (제1보). 미셀용액속에서의 탈인산화 반응에 미치는 2-알킬벤즈이미다졸음이온들의 치환기효과

  • Young-Seuk Hong (Department of Chemistry, College of Natural Science) ;
  • Chan-Sik Park (Department of Chemistry, College of Natural Science) ;
  • Jung-Bae Kim (Department of Chemistry, College of Natural Science)
  • 홍영석 (계명대학교 자연과학대학 화학과) ;
  • 박찬식 (계명대학교 자연과학대학 화학과) ;
  • 김정배 (계명대학교 자연과학대학 화학과)
  • Published : 1985.10.20

Abstract

The reactions of p-nitrophenyldiphenylphosphate (p-NPDPP) with anions of benzimidazole (BI) and its 2-alkyl derivatives (R-BI) are strongly catalyzed by the micelles of cetyltrimethyl ammonium bromide (CTABr). On the other hand, the first order rate constants $(k'_{R-BI^-})$ and the second order rate constants $(k_{m(R-BI^-)})$ of the reactions mediated by R-$BI^-$in the micellar pseudophase are much smaller than those mediated by $BI^-$. In order to explain the slower rates of the micellar reactions mediated by R-$BI^-$, we compared the concentration-ratios ([R-$BI^-$]/[$BI^-$]) with the first order rate constant-ratios $(k'_{R-BI^-}/k'_{BI^-})$ and the second order constant-ratios $(k_{m(R-BI^-)}/k_{m(BI^-)})$ for the reactions taking place in the micellar pseudophase. The rate constant-ratios were much smaller than the concentration-ratios. For example in a 5 ${\times}10^{-4}$M butyl-BI solution, the two ratios were 0.089 and 0.430 (for the first order) respectively, and in a $10^{-4}$M butyl-BI solution the former was 0.100 (for the second order). This predicts that the reactivities of R-$BI^-$ in the micellar pseudophase are much smaller than that of $BI^-$. Based on the values of several kinetic parameters measured for dephosphorylation of p-NPDPP mediated by R-$BI^-$, a schemetic model is proposed. Due to the hydrophobicity and the steric effect of the alkyl substituents, these groups would penetrate into the core of the micelle for stabilization by van der Waals interaction with long cetyl groups of CTABr. Consequently, the movements of R-$BI^-$ bound to the micelle should be restricted, leading to decreased collison frequencies between the nucleophiles and p-NPDPP. We refer this as an "anchor effect". This effect became more predominent when a larger alky group in R-BI was employed and when a greater concentration of R-BI was used.

Keywords

References

  1. J. Amer. Chem. Soc. v.103 C.A. Bunton;Y.S. Hong;L.S. Romsted;C. Quan
  2. J. Amer. Chem. Soc. v.101 C.A. Bunton;G. Cerichelli;Y. Ihara;L. Sepulveda
  3. Reaction Mechanism in Phosphate Ester Hydrolysis E.J. Fendler
  4. J. Chem. Soc. F.D. Chattaway
  5. J. Amer. Chem. Soc. v.93 C.A. Blyth;J.R. Knowles
  6. J. Amer. Chem. Soc. v.59 W.D. Pool;H.J. Harwood;A.W. Ralston
  7. Organic synthesis, collective v.II A.H. Blatt
  8. J. Amer. Chem. Soc. v.65 R.A.B. Copeland;A.R. Day
  9. Chemical Abstracts v.42
  10. Chem. Pharm. Bull. v.22 T. Hisano;M. Ichikawa
  11. Kolloidn. Zh. v.37 A.K. Yatsimirski;A.P. Osipov;K. Martinek;I. V. Berezin
  12. CRC Hand Book, D-126
  13. Buffers for pH and Metal ion Control D.D. Perrin
  14. Catalysis in Micellar and Macromolecular System J.H. Fendler;E.J. Fendler
  15. J. Amer. Chem. Soc. v.99 Y. Okahata;R. Ando;Tunitake
  16. J. Chem. Soc. Comm. J.P. Guthrie;Y. Ueda
  17. J. Amer. Chem. Soc. v.89 F.M. Menger;C.E. Portnoy
  18. J. Amer. Chem. Soc. v.87 M.T.A. Behme;E.H. Cordes
  19. J. Amer. Chem. Soc. v.90 C. Citler;A. Ochoa-Solano
  20. Bull. Chem. Soc., Jpn. v.49 no.2 T. Kunitake;S. Shinkai;Y. Okahata
  21. J. Org. Chem. v.39 R.A. Moss;W.L. Sunshine
  22. J. Amer. Chem. Soc. v.81 G.O. Dudek;F.H. Westheimer
  23. J. Chem. Soc. Comm. J.M. Brown;C.A. Bunton;S. Diaz
  24. J. Amer. Chem. Soc. v.2 G.J. Buist;C.A. Bunton;L. Robinson;L. Sepulveda;M. Stam
  25. J. Amer. Chem. Soc. v.90 C.A. Bunton;L. Robinson
  26. J. Org. Chem. v.35 C.A. Bunton;L. Robinson;L. Sepulveda
  27. J. Org. Chem. v.34 C.A. Bunton;L. Robinson
  28. Reaction Kinetics in Micelles C.A. Bunton;E.H. Cordes(ed.)
  29. J. Amer. Chem. Soc. v.95 C.A. Bunton;L.G. lonescu
  30. J. Amer. Chem. Soc. v.92 C.A. Bunton;L. Robinson;M. Amer
  31. Ph. D. Dissertation, Univ. of Pittburgh E.P. Mazzola
  32. J. Amer. Chem. Soc. v.91 C.A. Bunton;L. Robinson;L. Spepulvada
  33. Bioorganic Mechanisms T.C. Bruice;S. Benkovic
  34. Catalysis in Chemistry and Enzymology W.P. Jenks
  35. Mechanism of Homogeneous Catalysis from Proton to Proteins M.L. Bender
  36. J. Org. Chem. v.44 no.21 J.M. Brown;C.A. Bunton;S. Diaz;Yasuj
  37. J. Amer, Chem. Soc. v.88 R. Blakeley;F. Kerst;F.H. Westheimer
  38. Micellization, Solubilization and Microemulsions K. Martinek;A.K. Yatsimirski;A.V. Levashov;I.V. Berezin;K.L. Mittal(ed.)
  39. Micellization, Solubilization and Microemulsions R.A. Moss;R.C. Nahas;S. Ramawami
  40. J. Amer. Chem. Soc. v.103 C.A. Bunton;Y.S. Hong;L.S. Romsted;C. Quan
  41. J. Amer. Chem. Soc. v.90 L.S. Romsted;E.H. Cordes
  42. Monatch v.57 R. Seka;R.H. Muller
  43. Chem. Phan. Bull., Tokyo v.11 H. Nogami;Y. Kunakubo
  44. Tetrahedron Lett. C.A. Bunton;L. Robinson;M.F. Stam
  45. J. Org. Chem. v.4 A. Albert;B. Bloom;A.R. Day
  46. Solution Chemistry of Surfactants U. Tonellato;K. L. Mittal.(ed.)
  47. J. Phys. Chem. v.84 C.A. Bunton;L.S. Romsted;L. Sepulveda