Synthesis and Defect-Structure Analysis of $ThO_2-Tm_2O_3$ Solid Solutions

$ThO_2-Tm_2O_3$ 고용체의 합성 및 결함구조해석

  • Don Kim (Department of Chemistry, Yonsei University) ;
  • Chang Kwon Kang (Department of Chemistry, Yonsei University) ;
  • Keu Hong Kim (Department of Chemistry, Yonsei University) ;
  • Jae Shi Choi (Department of Chemistry, Yonsei University)
  • 김돈 (연세대학교 이과대학 화학과) ;
  • 강창권 (연세대학교 이과대학 화학과) ;
  • 김규홍 (연세대학교 이과대학 화학과) ;
  • 최재시 (연세대학교 이과대학 화학과)
  • Published : 1987.12.20

Abstract

$ThO_2-Tm_2O_3$ (TDT) solid solutions containing 1,3,5,8,10, and 15 mol% $Tm_2O_3$ were synthesized from spectroscopically pure $ThO_2$ and $Tm_2O_3$ polycrystalline powders. The TDT solid solutions were indentified to the fluorite structure by the X-ray powder technique. The values of the lattice parameter were decreased with increasing amount of $Tm_2O_3$ incorporated. But, there was no linearity for the samples containing 8, 10, and 15 mol% $Tm_2O_3$. It was concluded that these samples became incomplete solid solutions. From the intensity analyses of X-ray diffraction patterns, the residual factor was found below 0.13 even for the 15 mol% TDT system. lt was confirmed from the DTA and TGA analyses that any phase transitions did not occur under the experimental condition executed. Comparing the pycnometric density with the lattice parameter obtained from XRD, it was suggested that the predominant defect model be an oxygen vacancy.

Keywords

References

  1. Turbo Pascal A Problem-Solving Approach E. B. Koffman
  2. Using Turbo Pascal Version 3.0 S. Wood
  3. J. Am. Ceram. Soc. v.47 D. W. Strickler;W. G. Carlson
  4. J. Chem. Phys. v.39 T. Y. Tien;E. C. Subbarao
  5. PASCAL J. L. Richarrds
  6. J. Chem. Phys. v.45 J. E. Bauerle
  7. Mater. Res. Bull. v.8 A. K. Mehrotra;H. S. Maiti;E. C. Subbarao
  8. Z. Phys. Chem. N. F. M. F. Lasker;R. A. Rapp
  9. J. Nucl. Mater. v.118 E. A. Colbourn;W. C. Mackrodt
  10. Z. Anorg. Allg. Chem. G. Brauer;H. Gradinger
  11. U. S. At. Energy Comm., TID-1488 K. A. Gingerich
  12. J. Nucl. Mater. v.52 J. M. Pope;K. C. Radford
  13. J. Nucl. Mater. v.116 M. Ugajin;T. Shiratori;K. Shiba
  14. J. Am. Ceram. Soc. v.64 R. J. Cava;R. S. Roth;D. B. Minor
  15. J. Ceram. Assoc. Jpn. v.71 C. Kawashima;S. Saito;O. Fukunaga
  16. Landolt-Bornstein v.7 K. H. Hellwege(ed.)
  17. J. Phys. Chem. Solids v.47 J. S. Choi;K. H. Kim;W. Y. Chung
  18. X-ray Structure Determination Guide G. H. Stout;L. H. Jensen
  19. X-ray Structure Determination Guide G. H. Stout;L. H. Jensen
  20. Solid State Chemistry and It's Applications A. R. West
  21. Crystal-Structure Analysis M. J. Buerger
  22. Elements of X-ray Diffraction B. D. Cullity
  23. J. Am. Ceram. Soc. v.53 I. Bransky;N. M. Tallan
  24. J. Electrochem. Soc. v.118 N. M. Tallan;I. Bransky;I. Bransky
  25. Phys. Rev. B. v.10 B. W. Veal;D. J. Lam
  26. J. Am. Ceram. Soc. v.48 E. C. Subbarao;P. H. Sutter;J. Hrizo
  27. Solid State Chemistry and It's Applications A. R. West
  28. Chem. Rev. v.70 T. H. Etsell;S. N. Flengas
  29. J. Am. Ceram. Soc. v.57 N. S. Choudhuri;J. S. Parterson
  30. J. Am. Ceram. Soc. v.50 J. M. Wimmer;L. R. Bidwell;N. M. Tallan
  31. Proc. Phys. Soc. (London) v.57 J. B. Nelson;D. P. Riley
  32. Ger. Offen. 2,350,364-6 J. Jung;R. Ziegler