Effects of Mo Addition on the Microstructures and Mechanical Properties of $Al_2O_3$ Ceramics

Mo첨가가 $Al_2O_3$ 세라믹스의 미세구조 및 기계적 성질에 미치는 영향

  • 박정현 (연세대학교 요업공학과) ;
  • 문성환 (연세대학교 요업공학과) ;
  • 백승수 (연세대학교 요업공학과) ;
  • 정동익 (연세대학교 요업공학과)
  • Published : 1988.03.01


To investigate the effects of Mo addition on the microstructures and mechanical properties of Al_2O_3$ ceramics, two kinds of Mo particles with average sizes of 2-${\mu}{\textrm}{m}$ and 6-${\mu}{\textrm}{m}$ were used as additives. It was shown that Mo particles inhibited the grain growth of Al_2O_3$, and the smaller Mo particles were more effective. In case of 2-${\mu}{\textrm}{m}$ Mo dispersion, the bending strength and the fracture toughness were increased. Dispersion of 6-${\mu}{\textrm}{m}$ MO did not increase the strength but improved the fracture toughness a little. The toughening mechanisms of Al_2O_3$-Mo composites are thought to be the crack deflection and microcracking mechanisms.

Mo 입자의 첨가가 Al_2O_3$ 세라믹스의 미세구조와 기계적 성질에 미치는 영향을 알아보기 위하여 평균입경이 2-micron인 Mo와 6-micron인 Mo를 Al_2O_3$에 각 분산시켜 1$600^{\circ}C$, $H_2$ 분위기에서 5시간 소결하였다. Mo는 Al_2O_3$의 입자성장을 억제시켰으며 Mo의 입자가 작을 때 그 효과는 크게 나타났다. 2-micron Mo를 분산한 경우 꺽임강도와 파괴인성은 크게 증가하여하였으며, 6-micron Mo를 분산한 경우 강도는 증가하지 않았으나 파괴인성은 다소 증가하였다. Al_2O_3$-Mo계의 인성증진기구는 균열편향에 의한 파단면의 증가와 미세균열에 의한 균열전파에너지의 분산에 의한 것으로 보인다.



  1. J. Am. Ceram. Soc. v.54 no.1 Fracture Energy of Al₂O₃ Containing Mo Fibers L.A. Simpson;A. Wasylyshyn
  2. Am. Cem. Soc. Bull. v.58 no.4 Molybdenum Reinforced Aluminum Oxide Single Crystal J.W. Mccauley;F. Schmid;D.J. Viechniki
  3. J. Am. Ceram. Soc. v.60 no.9 Strength and Toughness of a Ceramic Reinforced with Metal Wires J.G. Zwissler;M.E. Fine
  4. Fracture Mechanics of Ceramics v.6 K.T. Faber;A.G. Evans;M.D. Drory;R.C. Bradt(et al.)
  5. J. Am. Ceram. soc. v.64 no.7 Toughening of Ceramics by Circumferential Microcracking A.G. Evans;K.T. Faber
  6. Fracture in Ceramic Materials Induced Microcracking: Effects of Applied Stress A.G. Evans;Y. Fu
  7. J. Am. Ceram. Soc. v.68 no.5-6 REVIEW-Transformation Toughening in Ceramics: Martensitic Transformations in Crack-Tip Stress Fields A.G. Evans;A.H. Heuer
  8. J. Am. Ceram. Soc. v.49 no.9 Dispersion Strengthened Aluminum Oxide C.O. Mchugh;t.J. Whalen;M. Humenik Jr.
  9. J. Am. Ceram. Soc. v.54 no.6 Hot-Pressing and Mechanical Properties of Al₂O₃with an Dispersed Phase D.T. Rankin;J.J. Stiglich;D.R. Petrak;Rober Rub
  10. Am. Ceram. Soc. Bull. v.61 no.9 Thermal-Shock Resistant Alumnia-Metal Insulators C.S. Morgan;A.J. Moorhead;R.J. Lauf
  11. J. Am. Ceram. Soc. v.64 no.8 Thermal Diffusivities of Molybdenum/Alumnia Cermets H.C. Miller
  12. J. Am. Ceram. Soc. v.59 no.7-8 Fracture Toughness Determination by Indentation A.G. Evans;E.A. Charles
  13. J. Am. Ceram. Soc. v.48 no.3 Remarks on Sintering Kinetics G.F. Bolling
  14. Trans. AIME v.180 Some Factors Affecting the Rate of Grain Growth in Metals[70:30 Brass] C. Zener;J.E. Burke
  15. J. Am. Ceram. Soc. v.44 no.8 Internal Stresses in Ceramics J. Selsing
  16. Ceram. Eng. Sci. Proc. v.2 no.7-8 Mechanisms of Toughning in Ceramic Matrix Composites R.W. Rice
  17. Fracture Mechanics of Ceramics v.2 Criteria for Crack Extension and Arrest in Residual, Localized Stress Field Associated with Second Phase Particles F.F. Lange