Desorption of Water, Ammonia, and Methylamines on $K^+$ Ion Exchanged Zeolite L

칼륨 이온 치환 제올라이트-L 에서 물, 암모니아 및 메틸아민류의 탈착

  • Sung-Doo Moon (Department of Chemistry, College of Natural Science, Dongeui University) ;
  • Dai-Ung Choi (Department of Chemistry, College of Natural Science, Dongeui University) ;
  • Un-Sik Kim (Department of Chemistry, College of Natural Sciences, Pusan National University) ;
  • Yang Kim (Department of Chemistry, College of Natural Science, Dongeui University)
  • 문성두 (동의대학교 자연과학대학 화학과) ;
  • 최대웅 (동의대학교 공과대학 화학공학과) ;
  • 김은식 (부산대학교 자연과학대학 화학과) ;
  • 김양 (동의대학교 자연과학대학 화학과)
  • Published : 1988.06.20

Abstract

The potential energy of adsorbate molecules in the main channel of $K^+$ ion exchanged zeolite L(K-L) was calculated. In K-L which adsorbs three molecules per unit cell, the interaction energies of $H_2O,\;NH_3,\;CH_3NH_2,\;(CH_3)_2NH,\;and\;(CH_3)_3N$ molecules with zeolite lattice are 61.11, 62.31, 65.68, 74.65, and 79.88kJ/mol, respectively. These values are less by 3.7∼12.6kJ/mol than $K^+$ ion affinities with adsorbing molecules. These results may be due to the facts that the electrostatic energies are reduced by the negative charge of the lattice oxygens. The distribution of adsorption sites of $NH_3$ and $CH_3NH_2$ in K-L was investigated by a technique of temperature programmed desorption. The experimental value of desorption energies of $NH_3$ and $CH_3NH_2$ on K-L are in good agreement with the theoritical values. It is concluded that the desorption of $NH_3$ and $CH_3NH_2$ on K-L is the first-order desorption with free readsorption.

Keywords

References

  1. J. Chem. Phys. v.57 K. G. Spears
  2. J. Chem. Phys. v.57 I. Eliezer;P. Krindel
  3. J. Phys. Chem. v.82 M. Nitta;K. Ogawa;K. Aomura
  4. Zeolites v.5 A. G. Kiselev;A. A. Lopatkin;A. A. Shulga
  5. J. Chem. Phys. v.42 R. A. Scott;H. A. Scheraga
  6. Adv. Catal. v.17 R. J. Cventanovic;Y. Amenomiya
  7. J. Catal. v.48 J. A. Konvalinka;J. J. F. Scholten;J. C. Rasser
  8. J. Chem. Soc., Faraday Trans. 1 v.81 K. Morishige;S. Kittaka;S. Ihara
  9. J. Chem. Soc., Faraday Trans. 1 v.73 E. F. Vansant;G. Peeters
  10. Zeolites v.3 P. A. Newell;L. V. C. Rees
  11. J. Catal. v.45 B. Coughlan;W. M. Carroll;W. A. Mc Cann
  12. A. E. R. E. Report Fortran Subroutines for minimization By Quasi-Newton Methods R. Fletcher
  13. 化學大辭典 v.1 化學大辭典編集委員會
  14. Handbook of Chemistry and Physics R. C. Weast
  15. J. Phys. Chem. v.86 S. F. Smith;J. Chandrasekharand;W. L. Jorgensen
  16. J. Chem. Phys. v.51 J. E. Wollrab;V. W. Laurie
  17. J. Am. Chem. Soc. v.103 W. L. Jorgensen
  18. J. Am. Chem. Soc. v.92 W. J. Hehre;J. A. Pople
  19. J. Am. Chem. Soc. v.98 W. R. Davidson;P. Kebarle
  20. Z. Krist. v.128 R. M. Barrer;H. Villiger
  21. J. Phys. Chem. v.79 T. J. Weeks;A. P. Bolton
  22. J. Catal. v.41 Y. Ono;K. Hatada;K. Fujita;A. Halgeri;T. Keii
  23. J. Chem. Soc., Faraday Trans. 1 v.71 P. Pinhat;C. Franco-para;D. Barthomeuf
  24. J. Am. Chem. Soc. v.94 J. Applequist;J. R. Carl;K. K. Fung
  25. J. Chem. Phys. v.23 T. Nishikawa;T. Itoh;K. Shimoda
  26. PH. D. Thesis, Pusan National University J. Y. Park
  27. J. Chem. Soc., Faraday Trans. 2 v.74 A. G. Bezus;A. V. Kiselev;A. A. Lopatkin;P.Q. Du
  28. J. Phys. Chem. Solids v.43 S. Beran
  29. Zeolites v.3 P. A. Newell;L. V. C. Rees
  30. J. Chem. Soc., Faraday Trans. 1 v.72 Y. Ono;M. Kaneko;K. Kogo;H. Takayanagi;T. Keii
  31. J. Catal. v.40 C. F. Parra;D. Ballivet;D. Barthomeuf
  32. U. S. Patent 3,794,600 H. U. Schutl