Oxygen Ring Formation Reaction of Mono-Oxo-Bridged Binuclear Molybdenum(V) Complex (II). Reaction of $[Mo_2O_3(Phen)_2(NCS)_4]$ with Solvent Water in Water + Co-Solvent Mixtures

한개의 산소다리를 가진 몰리브덴(V) 착물의 산소고리화 반응 (II). 2성분 혼합용매에서 용매물과 $[Mo_2O_3(Phen)_2(NCS)_4]$의 반응

  • Sang-Oh Oh (Department of Chemistry, College of Natural Science Kyung-Pook National University) ;
  • Huee-Young Seok (Department of Chemistry, College of Natural Science Kyung-Pook National University)
  • 오상오 (경북대학교 자연과학대학 화학과) ;
  • 석휘영 (경북대학교 자연과학대학 화학과)
  • Published : 1988.06.20


Mono-oxo-bridged binuclear molybdenum(V) complex, $[Mo_2O_3(Phen)_2(NCS)_4]$ produces di-oxo-bridged binuclear molybdenum(V) complex, $[Mo_2O_4(Phen)_2(NCS)_2]$ in water + co-solvent, where the co-solvent are acetone, acetonitrile and N,N-dimethylformamide. The rate of conversion of $[Mo_2O_3(Phen)_2(NCS)_4]\;into\;[Mo_2O_4(Phen)_2(NCS)_2]$ has been measured by spectrophotometric method. Temperature was $10^{\circ}C$ to $40^{\circ}C$ and pressure was varied up to 1500 bar. The rate constants are increased with increasing water mole fraction and decreased with increasing concentration of hydrogen ion. The order of oxygen ring formation reaction rate in various cosolvent is as follows, ACT > AN > DMF which is agreed with solvent dielectric constants. The observed negative activation entropy ($[\Delta}S^{\neq}$), activation volume($[\Delta}V^{\neq}$) and activation compressibility coefficient(${\Delta}{\beta}^{\neq}$) values show that the solvent water molecule is strongly attracted to the complex at transition state. From these results, the oxygen ring formation reaction of $[Mo_2O_3(Phen)_2(NCS)_4]$ is believed association mechanism.



  1. J. Inorg. Nucl. Chem. v.34 H. K. Saha;M. C. Halder
  2. Inorg. Chem. v.13 W. E. Newton;J. L. Corbin;D. C. Bravard; J. E. Searles;J. W. McDonard
  3. J. Chem. Soc.(Dalton Trans) Muktimoy Chaudhury
  4. J. Chem. Commun G. K. Kneale;A. J. Geddes;Y. Sasaki;T. Shibahara;A. G. Sykes
  5. Inorg. Chem. v.8 H. E. Pence;J. Sebin
  6. Inorganic and Organomethallic Reaction Mechanisms J. D. Atwood
  7. J. Org. Chem. v.43 H. Kwart;T. H. Lilly
  8. J. Am. Chem. Soc. v.89 H. S. Golinkin;I. Lee;J. B. Hyne
  9. J. Korean. Chem. Soc. S. O. Oh;H. Y. Seok
  10. Progress in Inorganic Chemistry v.22 E. I. Stiefel;S. J. Lippard
  11. Z. anarg. allg. chem. v.408 M. F. Rudolf;A. Wolniak
  12. J. Inorg. Nucl. Chem. v.24 G. P. Haight, Jr
  13. Bio-Inorganic Chemistry R. W. Hay;E. H. Limited
  14. Bull. Chem. Soc. Japan v.58 K. Yokoi;I Watanabe;S. Ikeda
  15. J. Korean. Chem. Soc. v.30 S. O. Oh;J. K. Kwon;C. S. Kim
  16. Purifcation of Laboratory Chemicals D. D. Perrin;W. L. F. Armarego;D. R. Perrin
  17. J. Korean. Chem. Soc. v.26 S. O. Oh;J. D. Rhee
  18. Vogel's Textbook of Quantitative Inorganic Analysis J. Bassett;R. C. Denny;G. H. Jeffery;J. Mendham
  19. High-Temperature High-Pressures v.7 H. Lentz;S. O. Oh
  20. Liquid Phase High Pressure Chemistry N. S. Isaacs
  21. Inorg. Chem. v.8 L. R. Melby
  22. J. Chem. Soc.(A) R. N. Jowitt;P. C. H. Mitchell
  23. The Review of Physical Chemistry of Japan v.50 R. V. Eldikand;H. Kelm
  24. Transition Met. Chem. v.9 C. S. Kim;R. K. Murmann;E. D. Schlemper
  25. Infrared and Raman Spectra of Inorganic and Coordination Compounds K. Nakamoto
  26. J. Chem. Soc. R. G. James;W. Wardlow
  27. Bull. Chem. Soc. Jpapn v.50 Y. Sasaki