Studies on the Elution Behavior and the Simultaneous Analysis of Some Metal-Dithiocarbamate Chelates by Reversed-Phase High Performance Liquid Chromatography

역상 액체 크로마토그래피에 의한 몇가지 금속-Dithiocarbamate 킬레이트의 용리거동 및 동시분석에 관한 연구

  • Dai Woon Lee (Department of Chemistry, Yonsei University) ;
  • Yun Je Kim (Department of Chemistry, Kyung Kee University) ;
  • Hyun Chul Kim (Department of Chemistry, Kyung Kee University) ;
  • Won Lee (Department of Chemistry, Kyung Kee University)
  • 이대운 (연세대학교 이과대학 화학과) ;
  • 김연제 (경희대학교 문리과대학 화학과) ;
  • 김현철 (경희대학교 문리과대학 화학과) ;
  • 이원 (경희대학교 문리과대학 화학과)
  • Published : 1988.06.20


Liquid chromatographic behavior of several metal ions in dithiocarbamate(DTC) chelates were investigated by reversed phase high performance liquid chromatography on Novapak $C_{18}$ and ${\mu}$-Bondapak $C_{18}$ columns. The optimum conditions for the separation of DTC-metal chelate were examined with respect to the pH, shaking time, flow rate, extraction solvent, and mobile phase strength. The metal ions in mixtures at trace level, chelated with some dithiocarbamate derivatives were separated successfully on Novapak $C_{18}$ column using acetonitrile/methanol/water or acetonitril/water mixtures as mobile phases. It was found that all DTC metal chelates studied were eluted in an acceptable range of capacity factor values ($0{\leqq}log\;k'{\leqq}1$). Although several foreign metal ions were coexisted, high recovery and good precision were attained ; 97.0-106.7 % for the recovery and 0.98-3.41% for the coefficient of variation. Under the optimum analytical conditions, trace metal ions in the composite water samples were determined sucessfully with in relative error of about {\pm}$6.7 %.



  1. J. Organometal. Chem. v.159 P. E. Antle;C. A. Tolman
  2. Anal. Chem. v.53 D. W. Hausler;L. T. Taylor
  3. J. Chromatogy. v.109 K. Saitoch;N. Suzuki
  4. Analyst. v.110 R. M. Smith;A. M. Butt;A. Thakur
  5. Anal. Chem. v.59 J. N. King;J. S. Fritz
  6. J. Chromatogr. v.291 E. Brandstetesova;J. Lehotay;O'Liska;J. Garaj
  7. Collection Czechoslovak Chem. Commun. v.49 S. Miertus;V. Frecer
  8. Anal. Chim. Acta. v.159 A. R. Timerbaev;O. M. Petrukhin
  9. Bull. Chem. Soc. Japan v.50 N. Wuzuki;K. Saitoh
  10. Talenta v.14 A. Hulanicki
  11. Practical Liquid Chromatography S. G. Perry;R. Smos;P. I. Brewer
  12. Chem. Commun. H. Veening;J. M. Greenwood;W. H. Shanks;B. R. Willeford
  13. J. Organometal. Chem. v.38 J. M. Greenwood;Ho. Veening;B.R. Willeford
  14. Z. Anal. Chem. v.266 P. Heizmann;K. Ballschmiter
  15. Anal. Chem. Acta. v.94 P. C. Wden;I. E. Bigley
  16. J. Chromatogy. v.172 O. Liska;J. Lehotay;E. Brandsteterova;G. Guiochonand;H. Colin
  17. Anal. Lett. v.9 C. Botre;F. Cacace;R. Cozzani
  18. Anal. Lett. v.8 P. C. Uden;D. M. Parees;F. H. Walters
  19. Analusis v.7 A. Berthod;M. Kolosky;J. L Rocca;O. Vittori
  20. Analyst v.107 R. M. Smith;L. E. Yankey
  21. Anal. Proc(London) v.17 E. B. Edward-Inatini;J. A. Dalzied
  22. Anal. Chem. v.54 A. M. Bond;G. G. Wallace
  23. J. Lia. Chromatogr. v.6 no.10 A. M. Bond;G. G. Wallace
  24. Anal. Chem. v.54 R. M. Cassidy;S. Elchuk;J. O. Mchugh
  25. Bunseki Kagaku v.31E S. Ichinoki;M. Yamazaki
  26. Anal. Chem. v.54 J. W. O'Laughlin
  27. Chromatogr. v.4 Z. Plzak;J. Plesek;B. Stibr
  28. J. Lig. Chromatogr. v.4 D. A. Buckingham;C. R. Clark; R. F. Tasker;M. T. W. Hearn
  29. Anal. Chem. v.53 W. A. MacCreham
  30. Anal. Chem. v.48 D. R. Jones, IV;S. E. Manahan
  31. J. Liq. Chromatogr. v.1 J. W. O'Laughlin
  32. Anal. Chem. v.52 T. C. Pinkerton;W. R. Heineman;E. Deutsoh
  33. Principles of Adsorption Chromatography L. R. Snyder
  34. Anal. Chem. v.52 J. W. O'Laughlin;R. S. Hanson