Systolic Arrays for Constructing Static and Dynamic Voronoi Diagrams

두 형의 Voronoi Diagram 구축을 위한 Systolic Arrays

  • Published : 1988.10.01


Computational geometry has wide applications in pattern recognition, image processing, VLSI design, and computer graphics. Voronoi diagrams in computational geometry possess many important properites which are related to other geometric structures of a set of point. In this pater the design of systolic algorithms for the static and the dynamic Voronoi diagrams is considered. The major motivation for developing the systolic architecture is for VLSI implementation. A new systematic transform technique for designing systolic arrays, in particular, for the problem in computational geometry has been proposed. Following this procedure, a type T systolic array architecture and associated systolic algorithms have been designed for constructing Voronoi diagrams. The functions of the cells in the array are also specified. The resulting systolic array achieves the maximal throughput with O(n) computational complexity.