Selective Oxidation of 2,6-di-tert-butylphenol and Electrochemical Properties by Oxygen Adducted Tetradentate Schiff Base Cobalt (Ⅲ) Activated Catalysts in Aprotic Solvents

비수용매에서 산소 첨가된 네자리 Schiff Base Cobalt(Ⅲ) 활성 촉매들에 의한 2,6-di-tert-butylphenol의 선택 산화와 전기화학적 성질

  • 조기형 (전남대학교 화학과) ;
  • 최용국 (전남대학교 자연과학대학 화학과) ;
  • 함희석 (전남대학교 화학과) ;
  • 김상복 (울산대학교 자연과학대학 화학과) ;
  • 서성섭 (전남대학교 자연과학대학 화학과)
  • Published : 19901100

Abstract

It is generated in DMF by activated catalysts of superoxo cobalt(III) complex, such as [Co(III)(Schiff base)(L)]O$_2$ (Schiff base; SED, SOPD and o-BSDT, L; DMF and Py) which mole ratio of oxygen to metal is 1:1 that oxidation major product of 2,6-di-tert-butylphenol by homogeneous oxidatve catalysts of oxygen adducted tetradentate Schiff base cobalt(III) is 2,6-ditert-butylbenzoquinone (BQ). And oxidation product of 3,3',5,5'-tetra-tert-butyldiphenoquinone (DPQ) is generated by activated catalysts such as $\mu$-peroxo cobalt(III) complex; $[Co(III)(SND)(L)]_2$$O_2$ (L; DMF and Py) which mole ratio of oxygen to metal is 1:2. It is difficult to identify these homogeneous activated catalysts such as superoxo and $\mu$-peroxo cobalt(III) complexes in DMF and DMSO solvents. But we can identify by P.V.T method of the oxygen absorption in pyridine solvent and by the reduction process occurred to four steps including prewave of O$_2$- in 1:1 oxygen adducted superoxo cobalt(III) complexes and three steps not including prewave of O$_2$- in 1:2 oxygen adducted $\mu$-peroxo cobalt(III) complexes by the cyclic voltammetry with glassy carbon electrode in 0.1 M TEAP as supporting electrolyte solutidn.

Keywords

References

  1. Real, Trav. Chim. pays-Bus v.86 H. M. Van Dort;H. J. Guerson
  2. J. Inorg. Nucl. Chem. v.35 E. I. Ochiai
  3. J. Phys. Chem. v.71 J. A. Weil;J. K. Kinnaird
  4. J. Am. Chem. Soc. v.92 B. M. Hoffman;D. L. Dimento;F. Basolo
  5. J. Am. Chem. Soc. v.92 F. A. Walker
  6. J. Chem. Soc. Korea v.31 no.6 K. H. Chjo;J. S. Chung;H. S. Ham;S. S. Seo
  7. J. Chem. Soc. Korea v.33 no.2 K. H. Chjo;J. S. Chung;H. S. Ham;S. S. Seo
  8. J. Org. Chem. v.34 L. H. Vogt;J. G. Wirth;H. L. Finkbeimer
  9. J. Chem. Soc. H. R. Gersmann;A. F. Bickel
  10. J. Org. Chem. v.22 M. S. Kharasch;B. S. Jochi
  11. J. Am. Chem. Soc. v.69 R. H. Palas;M. Calvin
  12. Inorg. Chem. v.23 X. Y. Wang;R. T. Motekaitis;A. E. Martell
  13. Inorg. Chem. v.17 no.12 D. F. Averill;R. F. Broman
  14. J. Am. Chem. Soc. v.92 M. J. Carter;D. P. Rilema;F. Basolo
  15. J. Org. Chem. v.35 D. H. Tomaja;L. H. Vogt;J. G. Wirth
  16. J. Am. Chem. Soc. v.103 R. S. Drago;A. Zombeck;B. B. Cordon;J. H. Gaul
  17. J. Chem. Soc., (A) C. Floliani;F. Calderazzo
  18. Inorg. Chim. Acta v.5 C. Busetto;C. Neri;N. Palladino;E. Penotti
  19. Chem. Comm. D. Dimente;B. M. Hoffman;F. Basolo
  20. Purification of Laboratory Chemicals D. P. Perrin;W. L. F. Armarego;Dawn R. Perrin
  21. J. Chem. Educ. v.54 no.7 T. G. Appleton
  22. Bull. Chem. Soc. Japan v.45 M. Tada;T. Katsu
  23. J. Catal. v.41 V. M. Kothari;J. J. Tazuma
  24. J. Am. Chem. Soc. v.89 M. Mori;J. A. Weil
  25. Anal. Chem. v.54 D. T. Sawyer
  26. J. Chem. Soc. Korea v.33 no.3 K. H. Chjo;S. S. Seo;D. S. Chon
  27. Bull. Chem. Soc. Japan v.42 A. Misono;S. Koda