Electrochemical Properties of Binuclear Nickel(II) and Copper(II) Complexes with Tetradentate Schiff Base in Aprotic Solvents (1)

비수용매에서 이핵성 네자리 Schiff Base Nickel(II) 및 Copper(II) 착물들의 전기화학적 성질 (제 1 보)

  • Chjo Ki-Hyung (Department of Chemistry, College of Natural Science, Chonnam National University) ;
  • Choi Yong-Kook (Department of Chemistry, College of Natural Science, Chonnam National University) ;
  • Seo Seong-Seob (Department of Chemistry, College of Natural Science, Chonnam National University) ;
  • Lee Song-Ju (Department of Chemistry, College of Natural Science, Chonnam National University)
  • 최기형 (전남대학교 자연과학대학 화학과) ;
  • 최용국 (전남대학교 자연과학대학 화학과) ;
  • 서성섭 (전남대학교 자연과학대학 화학과) ;
  • 이송주 (전남대학교 자연과학대학 화학과)
  • Published : 1991.02.20

Abstract

We synthesized the binuclear Tetradentate Schiff base nickel(II) and copper(II) complexes ; [Ni(II)$_2$(SMPO)$_2$(L)$_2$], [Ni(II)$_2$(SPPD)$_2$(L)$_2$] and [Cu(II)$_2$(SMPD)$_2$] and [Cu(II)$_2$(SPPD)$_2$] (where, L : Py, DMSO and DMF). We identified the structure of these complexes by elemental analysis, IR-spectrum, T.G.A, D.S.C and ESR measurements. According to the results of cyclic voltammetry and DPP measurements in aprotic solvent included 0.1M TEAP as supporting electrolyte, we knew that diffusional controlled redox process of one step with one electron was irreversible process in 0.1M TEAP-Py solution. Also it was reversible or quasi reversible process in 0.1M TEAP-DMSO solution and reversible or E.C reaction mechanism in 0.1M TEAP-DMF solution at mononuclear complexes ; [Cu(II)(SOPD)] and [Ni(II)(SOPD)(L)$_2$]. But, we knew that diffusional controlled redox process of two step for one electron of binuclear complexes was as follows. The values of redox potential for dimeric complexes in 0.1M TEAP-L solution (where, L ; Py, DMSO and DMF) with scan rate 100mV/sec.

Keywords

References

  1. J. Pract. Chem. v.145 P. Pfeiffer;H. Pfitzner
  2. J. Pract. Chem. v.149 P. Pfeiffer;H. Pfitzner
  3. J. Pract. Chem. v.149 P. Pfeiffer;H. Pfitzner
  4. J. Chem. Soc. Japan v.74 M. Yamaguchi
  5. Bull. Chem. Soc. Japan v.33 no.9 Y. Muto
  6. J. Chem. Soc. Japan v.81 no.11 T. Tanaka
  7. J. Chem. Soc. Japan v.81 no.7 T. Tanaka
  8. J. Chem. Educ. v.54 no.7 T. G. Appleton
  9. J. Chem. Soc. no.A C. Floriani;F. Calderrazzo
  10. Chem. Rev. v.79 K. D. Janes;D. A. Summervills;F. Basolo
  11. Inorg. Chem. v.26 K. M. Kadish;D. Sazou;Y. M. Liu;A. Saoiabi;M. Fohat;R. Guiland
  12. Inorg. Chem. v.26 W. A. Nevin;M. R. Hempeted;W. Hiu;C. C. Heznoff;A. B. Phever
  13. Inorg. Chem. v.17 no.11 J. J. GreyBowski;P. H. Merrell;F. H. Urbach
  14. Inorg. Chem. v.25 W. Majurek;A. M. Bond;M. J. Oconnor;A. G. Wed
  15. J. Am. Chem. Soc. v.101 no.16 R. R. Gagne;C. A. Koval;J. J. Smith;M. C. Cimolino
  16. Inorg. Chem. v.27 A. M. Bond;M. A. Haga;F. S. Greece;R. Robson;J. C. Wilson
  17. J. Nat. Sci. (Chonnam Unniversity) v.7 no.1 K. H. Chjo
  18. J. Chem. Soc. Korean v.33 no.3 K. H. Chjo;S. S. Seo;D. C. Chon
  19. J. Chem. Soc. Korean v.31 no.6 K. H. Chjo;J. S. Chung;H. S. Ham;S. S. Seo
  20. Purification of Laboratory Chemicals D. D. Perrin;W. L. Armargo;Dawn R. Perrin
  21. J. Chem. Soc. v.547 J. C. Duff
  22. Bio Inorg. Chem. v.4 G. S. Patterson;R. H. Holm
  23. Inorg. Chem. v.17 no.7 E. F. Hasty;H. J. Wilson;D. N. Handrickson
  24. J. Chem. Soc. Japan v.88 no.3 K. Ozima
  25. J. Chem. Soc. Korea v.18 no.3 K. H. Chjo
  26. J. Mol. Catal. v.7 A. Nishinaga;H. Tomita
  27. J. Chem. Soc. Japan v.83 no.4 K. Isagai
  28. J. Am. Chem. Soc. v.103 P. H. Burk;J. A. Osborn;M. T. Youinou