Theoretical Study of the Conformation of Cis Carbene-Olefin Transition Matal Complexes

시스 카벤-올레핀 전이금속 착물들의 형태에 대한 이론적 연구

  • 박성규 (조선대학교 문리과대학 화학과) ;
  • 김일두 (조선대학교 문리과대학 화학과) ;
  • 김준태 (조선대학교 자연과학대학 화학과) ;
  • 최창진 (원광대학교 자연과학대학 화학과) ;
  • 전용구 (국방과학연구소)
  • Published : 1992.12.20


The conformations of several carbene-olefin-transition metal complexes[$(CO)_4M$-(CHX)olefin] (X: $OCH_3,\;NHCH_3,\;SCH_3$, M: C, Mo, W) have been studied by means of Extend Huckel calculations. In the case of $d^6$ transition metal octahedral complexes, it is shown that the two main factors which determine the optimal conformation are metal-to-ligand back-donation and direct ligand-ligand interaction at the metal, but the ligand-ligand interaction dominates the situation for a metal that is coordinated to $\pi$ acceptor ligands and to $\pi$ donor group on the carbene. The relative amounts of both factors depend strongly on the electronic nature of the ligands at the metal. The greater electron donating ability of nitrogen stabilizes amino-substituted carbene complexes compared with their alkoxyl substituted analogues. This interaction is optimal when the $\pi$ systems of the carbene and olefin are coplanar. The introduction of the $\pi$ donor group on the carbene carbon increases also the importance of the ligand-ligand interaction.



  1. J. Am. Chem. Soc. v.98 J. MeGinnis;T. J. Katz;S. Hurwitz
  2. Macromolecules v.14 C. P. Casey
  3. J. Am. Chem. Soc. v.103 O. Eisenstein;R. Hoffmann
  4. Organomet. v.1 M. Kamata;T. Yoshida;S. Otsuka;M. Hirotsu;T. Higushi;M. Kido;K. Tatsumi;R. Hoffman
  5. J. Comput. Chem. v.4 W. J. Pietro;J. W. Hehre
  6. J. Am. Chem. Soc. v.106 F. U. Axe;D. S. Marynick
  7. J. Am. Chem. Soc. v.107 A. R. Gregory;E. A. Mintz
  8. Organomet. v.1 N. M. Kostic;R. F. Fenske
  9. Inorg. Chem. v.14 A. R. Rossi;R. Hoffman
  10. Nouv. J. Chem. v.6 A. Dedieu;O. Eisenstein
  11. Angew. Chem. Int. Ed. Eng. v.3 E. O. Fischer;A. Massbol
  12. Inorg. Chem. v.5 F. A. Cotton;D. C. Richardson
  13. J. Organomet. Chem. v.28 E. O. Fischer;C. G. Kreiter;H. T. Kollmeier;J. Muller;R. D. Fischer
  14. J. Organomet. Chem. v.100 M. F. Lappert
  15. Transition metal Organometallics in Organic Symthesis v.I C. P. Casey
  16. J. Am. Chem. Soc. v.106 J. Ushio;H. Nakatsuji;T. Yonezawa
  17. Makromol. Chem. v.141 J. L. Herison;Y. Chauvin
  18. Adv. Organomet. Chem. v.17 N. Calderon;J. P. Lawrence;E. A. Ofstead
  19. Tetrahedron v.22 H. Nasaki;S. Moriuti;H. Takaya;R. Noyori
  20. Tetrahedron v.24 H. Nasaki;S. Moriuti;H. Takaya;R. Noyori
  21. Angew. Chem. v.667 K. Ziegler;E. Holtzkamp;H. Breil;H. Martin
  22. Macromol. Chem. v.16 G. Natta
  23. Chem. Lett. K. Nakatsu;T. Mitsudo;H. Nakanishi;Y. Watanabe;Y. Takegami
  24. J. Organomet. Chem. v.201 K. Hiraki;K. Sugino
  25. J. Am. Chem. Soc. v.96 C. P. Casey;T. J. Burkhardt
  26. J. Am. Chem. Soc. v.103 O. Eisenstein;R. Hoffmann;A. R. Rossi
  27. J. Am. Chem. Soc. v.107 T. H. Upton;A. K. Rappe
  28. J. Am. Chem. Soc. v.104 C. P. Casey;A. J. Shusterman;N. W. Vollendorf;K. J. Haller
  29. J. Am. Chem. Soc. v.106 C. P. Casey;N. W. Vollendorf;K. J. Haller
  30. J. Chem. Soc. Chem. Commun. C. A. Toledando;H. Rudler;J. C. Daran;Y Jeannin
  31. J. Chem. Soc. Chem. Commun. C. A. Toledando;A. Parlier;H. Rudler;J. C. Daran;Y. Jeannin
  32. J. Am. Chem. Soc. v.108 F. Volatron;O. Eisentein
  33. Macromolecules v.13 A. Zambelli;P. Locatelli;M. C. Cacchi;E. Rigamonti
  34. J. Am. Chem. Soc. v.104 R. Hoffmann;C. N. Wilker;O. Eisenstein
  35. J. Chem. Soc. Chem. Commun. K. J. Ivin;J. J. Rooney;C. D. Stewart;M. L. H. Green;R. Mathab
  36. Angew. Chem. v.86 E. O. Fischer
  37. J. Am. Chem. Soc. v.98 C. P. Casey;H. E. Tuinstra;M. C. Saenan
  38. J. Chem. Soc. v.A O. S. Mills;A. D. Redhouse
  39. J. Am. Chem. Soc. v.105 H. Nakatsuji;J. Ushio;S. Han;T. Yonezawa