Theoretical Study of the Conformation of Cis Carbene-Olefin Transition Matal Complexes

시스 카벤-올레핀 전이금속 착물들의 형태에 대한 이론적 연구

  • 박성규 (조선대학교 문리과대학 화학과) ;
  • 김일두 (조선대학교 문리과대학 화학과) ;
  • 김준태 (조선대학교 자연과학대학 화학과) ;
  • 최창진 (원광대학교 자연과학대학 화학과) ;
  • 전용구 (국방과학연구소)
  • Published : 1992.12.20

Abstract

The conformations of several carbene-olefin-transition metal complexes[$(CO)_4M$-(CHX)olefin] (X: $OCH_3,\;NHCH_3,\;SCH_3$, M: C, Mo, W) have been studied by means of Extend Huckel calculations. In the case of $d^6$ transition metal octahedral complexes, it is shown that the two main factors which determine the optimal conformation are metal-to-ligand back-donation and direct ligand-ligand interaction at the metal, but the ligand-ligand interaction dominates the situation for a metal that is coordinated to $\pi$ acceptor ligands and to $\pi$ donor group on the carbene. The relative amounts of both factors depend strongly on the electronic nature of the ligands at the metal. The greater electron donating ability of nitrogen stabilizes amino-substituted carbene complexes compared with their alkoxyl substituted analogues. This interaction is optimal when the $\pi$ systems of the carbene and olefin are coplanar. The introduction of the $\pi$ donor group on the carbene carbon increases also the importance of the ligand-ligand interaction.

Keywords

References

  1. Angew. Chem. Int. Ed. Eng. v.3 E. O. Fischer;A. Massbol
  2. Inorg. Chem. v.5 F. A. Cotton;D. C. Richardson
  3. J. Chem. Soc. v.A O. S. Mills;A. D. Redhouse
  4. J. Organomet. Chem. v.28 E. O. Fischer;C. G. Kreiter;H. T. Kollmeier;J. Muller;R. D. Fischer
  5. Angew. Chem. v.86 E. O. Fischer
  6. J. Organomet. Chem. v.100 M. F. Lappert
  7. Transition metal Organometallics in Organic Symthesis v.I C. P. Casey
  8. J. Am. Chem. Soc. v.105 H. Nakatsuji;J. Ushio;S. Han;T. Yonezawa
  9. J. Am. Chem. Soc. v.106 J. Ushio;H. Nakatsuji;T. Yonezawa
  10. Makromol. Chem. v.141 J. L. Herison;Y. Chauvin
  11. Adv. Organomet. Chem. v.17 N. Calderon;J. P. Lawrence;E. A. Ofstead
  12. Tetrahedron v.22 H. Nasaki;S. Moriuti;H. Takaya;R. Noyori
  13. Tetrahedron v.24 H. Nasaki;S. Moriuti;H. Takaya;R. Noyori
  14. Angew. Chem. v.667 K. Ziegler;E. Holtzkamp;H. Breil;H. Martin
  15. Macromol. Chem. v.16 G. Natta
  16. Chem. Lett. K. Nakatsu;T. Mitsudo;H. Nakanishi;Y. Watanabe;Y. Takegami
  17. J. Organomet. Chem. v.201 K. Hiraki;K. Sugino
  18. J. Am. Chem. Soc. v.98 C. P. Casey;H. E. Tuinstra;M. C. Saenan
  19. J. Am. Chem. Soc. v.96 C. P. Casey;T. J. Burkhardt
  20. J. Am. Chem. Soc. v.103 O. Eisenstein;R. Hoffmann;A. R. Rossi
  21. J. Am. Chem. Soc. v.107 T. H. Upton;A. K. Rappe
  22. J. Am. Chem. Soc. v.104 C. P. Casey;A. J. Shusterman;N. W. Vollendorf;K. J. Haller
  23. J. Am. Chem. Soc. v.106 C. P. Casey;N. W. Vollendorf;K. J. Haller
  24. J. Chem. Soc. Chem. Commun. C. A. Toledando;H. Rudler;J. C. Daran;Y Jeannin
  25. J. Chem. Soc. Chem. Commun. C. A. Toledando;A. Parlier;H. Rudler;J. C. Daran;Y. Jeannin
  26. J. Am. Chem. Soc. v.108 F. Volatron;O. Eisentein
  27. J. Chem. Soc. Chem. Commun. K. J. Ivin;J. J. Rooney;C. D. Stewart;M. L. H. Green;R. Mathab
  28. J. Am. Chem. Soc. v.98 J. MeGinnis;T. J. Katz;S. Hurwitz
  29. Macromolecules v.14 C. P. Casey
  30. Macromolecules v.13 A. Zambelli;P. Locatelli;M. C. Cacchi;E. Rigamonti
  31. J. Am. Chem. Soc. v.103 O. Eisenstein;R. Hoffmann
  32. Organomet. v.1 M. Kamata;T. Yoshida;S. Otsuka;M. Hirotsu;T. Higushi;M. Kido;K. Tatsumi;R. Hoffman
  33. J. Comput. Chem. v.4 W. J. Pietro;J. W. Hehre
  34. J. Am. Chem. Soc. v.106 F. U. Axe;D. S. Marynick
  35. J. Am. Chem. Soc. v.104 R. Hoffmann;C. N. Wilker;O. Eisenstein
  36. J. Am. Chem. Soc. v.107 A. R. Gregory;E. A. Mintz
  37. Organomet. v.1 N. M. Kostic;R. F. Fenske
  38. Inorg. Chem. v.14 A. R. Rossi;R. Hoffman
  39. Nouv. J. Chem. v.6 A. Dedieu;O. Eisenstein