Synthesis and Characterization of Vanadium(III) Complexes with N-Donating Ligands

질소 주개 리간드를 갖는 바나듐(III) 착물의 합성과 특성

  • Sang-Oh Oh (Department of Chemistry, College of Natural Science, Kyungpook National University) ;
  • Eun-Young Lyou (Department of Chemistry, College of Natural Science, Kyungpook National University)
  • 오상오 (경북대학교 자연과학대학 화학과) ;
  • 유은영 (경북대학교 자연과학대학 화학과)
  • Published : 1992.12.20

Abstract

Some vanadium(III) complexes have been prepared by the reaction of VCl3${\cdot}$3MeCN with ligands and characterized by elemental analysis, 1H-NMR, infrared and UV-Visible spectroscopy. 3,5-lutidine(lutd), 8-hydroxyquinoline(oxine), 1,2-phenylenediamine(phda), ethylenediamine(en), and sym-diphenylethylenediamine(dpen) were chosen as coordinating ligands. ${\nu}$(V-Cl) of lutidine complex occurs at 418 $cm^{-1}$ and the other complexes (oxine, phda, en, dpen) occur at 337∼347 $cm^{-1}$. The value of ${\nu}$(V-Cl) indicates that the former complex has trigonal bipyramid structure and the latter complexes have octahedral structure. The ${\nu}$(C${\equiv}$N) of acetonitrile in oxine and phda complexes are characteristically shifted to about 70 $cm^{-1}$ higher frequency compared with that of free ligand (2260 $cm^{-1}$). The ${\delta}$(C${\equiv}$N) is also shifted to about 60 $cm^{-1}$ higher frequency compared with that of free ligand (377 $cm^{-1}$). Finally each vanadium(III) complex showed the following formulation; [$VCl_3(lutd)_2$], [$VCl(oxine)_2$MeCN]$Cl_2$, [$VCl(phda)_2$MeCN]$Cl_2$, [$VCl_2(en)_2$]Cl, [$VCl_2(dpen)_2$]Cl.

Keywords

References

  1. Comprehensive Coordination Chemistry v.3 R. D. Gillard;G. Wilkinson(Ed.)
  2. Coord. Chem. Rev. v.37 D. A. Rice
  3. Coord. Chem. Rev. v.45 D. A. Rice
  4. Coord. Chem. Rev. v.57 E. M. Page
  5. J. Am. Chem. Soc. v.82 R. Eroli;F. Calderzo;A. Alberola
  6. Helb. Chem. Acta. v.65 Y. Ducommun;D. Zbinden;A. E. Merbach
  7. Inorg. Chim. Acta. v.25 A. Demsar;P. Bukovec
  8. J. Am. Chem. Soc. v.93 W. R. Scheidt;R. Countryman;J. L. Hoard
  9. J. Chem. Soc. (A) G. W. A. Fowles;P. T. Greene
  10. Z. Anorg. Allg. Chem. v.377 H. A. Rupp
  11. J. Chem. Soc. (A) R. J. H. Clark;M. L. Greenfield
  12. J. Chem. Soc. (A) D. T. Greene;P. L. Orioli
  13. J. Chem. Soc. (A) M. W. Duckworth;G. W. A. Fowles;R. A. Hoodless
  14. Spectrochimica Acta. v.21 R. J. H. Clark
  15. J. Chem. Soc. (A) R. J. H. Clark;R. S. Nyholm;D. E. Scaife
  16. Inorg. Chem. R. J. H. Clark;C. S. Williams
  17. Austral. J. Chem. v.16 F. P. Dwyer;E. G. Gyarfas
  18. J. Chem. Soc. (A) M. W. Duckworth;G. W. A. Fowles;P. T. Greene
  19. J. Chem. Soc. (A) R. J. H. Clark;J. Lewis;D. J. Machin;R. S. Nyholm
  20. Z. Anorg. Allg. Chem. v.294 S. Herzog
  21. J. Chem. Soc. (A) J. E. Drake;J. Verris;J. S. Wood
  22. Inorg. Chim. Acta. v.29 L. M. Mikulski;L. Mattucci;L. Weiss
  23. J. Chem. Soc. (A) P. C. Crouch;G. W. A. Fowles;R. A. Walton
  24. J. Am. Chem. Soc. v.93 W. R. Schidt;C. T. Sai;J. L. Hdard
  25. Inorg. Chem. J. S. Wood
  26. J. Chem. Soc. G. Sharpe;A. A. Woolf
  27. Coord. Chem. Rev. v.1 D. Nicholls