Synthesis and Characterization of Vanadium(III) Complexes with N-Donating Ligands

질소 주개 리간드를 갖는 바나듐(III) 착물의 합성과 특성

  • Sang-Oh Oh (Department of Chemistry, College of Natural Science, Kyungpook National University) ;
  • Eun-Young Lyou (Department of Chemistry, College of Natural Science, Kyungpook National University)
  • 오상오 (경북대학교 자연과학대학 화학과) ;
  • 유은영 (경북대학교 자연과학대학 화학과)
  • Published : 1992.12.20

Abstract

Some vanadium(III) complexes have been prepared by the reaction of VCl3${\cdot}$3MeCN with ligands and characterized by elemental analysis, 1H-NMR, infrared and UV-Visible spectroscopy. 3,5-lutidine(lutd), 8-hydroxyquinoline(oxine), 1,2-phenylenediamine(phda), ethylenediamine(en), and sym-diphenylethylenediamine(dpen) were chosen as coordinating ligands. ${\nu}$(V-Cl) of lutidine complex occurs at 418 $cm^{-1}$ and the other complexes (oxine, phda, en, dpen) occur at 337∼347 $cm^{-1}$. The value of ${\nu}$(V-Cl) indicates that the former complex has trigonal bipyramid structure and the latter complexes have octahedral structure. The ${\nu}$(C${\equiv}$N) of acetonitrile in oxine and phda complexes are characteristically shifted to about 70 $cm^{-1}$ higher frequency compared with that of free ligand (2260 $cm^{-1}$). The ${\delta}$(C${\equiv}$N) is also shifted to about 60 $cm^{-1}$ higher frequency compared with that of free ligand (377 $cm^{-1}$). Finally each vanadium(III) complex showed the following formulation; [$VCl_3(lutd)_2$], [$VCl(oxine)_2$MeCN]$Cl_2$, [$VCl(phda)_2$MeCN]$Cl_2$, [$VCl_2(en)_2$]Cl, [$VCl_2(dpen)_2$]Cl.

Keywords

References

  1. Comprehensive Coordination Chemistry v.3 R. D. Gillard;G. Wilkinson(Ed.)
  2. Coord. Chem. Rev. v.1 D. Nicholls
  3. Coord. Chem. Rev. v.37 D. A. Rice
  4. Coord. Chem. Rev. v.45 D. A. Rice
  5. Coord. Chem. Rev. v.57 E. M. Page
  6. J. Am. Chem. Soc. v.82 R. Eroli;F. Calderzo;A. Alberola
  7. Z. Anorg. Allg. Chem. v.294 S. Herzog
  8. Helb. Chem. Acta. v.65 Y. Ducommun;D. Zbinden;A. E. Merbach
  9. Inorg. Chim. Acta. v.25 A. Demsar;P. Bukovec
  10. J. Am. Chem. Soc. v.93 W. R. Schidt;C. T. Sai;J. L. Hdard
  11. J. Chem. Soc. G. Sharpe;A. A. Woolf
  12. J. Chem. Soc. (A) J. E. Drake;J. Verris;J. S. Wood
  13. J. Am. Chem. Soc. v.93 W. R. Scheidt;R. Countryman;J. L. Hoard
  14. J. Chem. Soc. (A) G. W. A. Fowles;P. T. Greene
  15. Z. Anorg. Allg. Chem. v.377 H. A. Rupp
  16. J. Chem. Soc. (A) R. J. H. Clark;M. L. Greenfield
  17. Inorg. Chim. Acta. v.29 L. M. Mikulski;L. Mattucci;L. Weiss
  18. J. Chem. Soc. (A) D. T. Greene;P. L. Orioli
  19. J. Chem. Soc. (A) M. W. Duckworth;G. W. A. Fowles;R. A. Hoodless
  20. Spectrochimica Acta. v.21 R. J. H. Clark
  21. J. Chem. Soc. (A) R. J. H. Clark;R. S. Nyholm;D. E. Scaife
  22. J. Chem. Soc. (A) P. C. Crouch;G. W. A. Fowles;R. A. Walton
  23. Inorg. Chem. R. J. H. Clark;C. S. Williams
  24. Austral. J. Chem. v.16 F. P. Dwyer;E. G. Gyarfas
  25. Inorg. Chem. J. S. Wood
  26. J. Chem. Soc. (A) M. W. Duckworth;G. W. A. Fowles;P. T. Greene
  27. J. Chem. Soc. (A) R. J. H. Clark;J. Lewis;D. J. Machin;R. S. Nyholm