Permeability properties of skeletal muscle ATP-sensitive K+ channels reconstituted into planar lipid bilayer

평지방막에 융합된 골격근의 single ATP-sensitive K+ channel의 이온투과성에 대한 연구

  • Ryu, Pan-dong (College of Veterinary Medicine, Seoul National University)
  • 류판동 (서울대학교 수의과대학)
  • Received : 1992.11.25
  • Published : 1992.12.30

Abstract

Properties of unitary ATP-sensitive $K^+$ channels were studied using planar lipid bilayer technique. Vesicles were prepared from bullfrog (Rana catesbeiana) skeletal muscle. ATP-sensitive $K^+$ (K (ATP)) channels were identified by their unitary conductance and sensitivity to ATP. In the symmetrical solution containing 200mM KCI, 10mM Hepes, 1mM EGTA and pH 7.2, single K (ATP) channels showed a linear current-voltage relations with slight inward rectification. Slope conductance at reversal potential was $60.1{\pm}0.43$ pS(n=3)). Micromolar ATP reversibly inhibited the channel activity when applied to the cytoplasmic side. In the range of -50~+50 mV, the channel activity was not voltage-dependent, but the channel gating within a burst was more frequent at negative voltage range. Varying the concentrations of external/internal KCl(mM) to 40/200, 200/200, 200/100 and 200/40 shifted reversal potentials to $-30.8{\pm}2.9$(n=3), $-1.1{\pm}2.7$(n=3), 10.5 and 30.6(mV), respecrivety. These reversal potentials were close to the expected values by the Nernst equation, indicating nearly ideal selectivity for $K^+$ over $Cl^-$. Under bi-ionic conditions of 200mM external test ions and 200mM internal $K^+$, the reversal potentials for each test ion/K pair were measured. The measured reversal potentials were used for the calculation of the releative permeability of alkali cations to $K^+$ ions using the Goldman-Hodgkin-Katz equation. The permeability sequence of 5 cations relative to $K^+$ was $K^+$(1), $Rb^+$(0.49), $Cs^+$(0.27), $Na^+$(0.027) and $Li^+$(0.021). This sequence was recognized as Eisenman's selectivity sequence IV. In addition, modelling the permeation of $K^+$ ion through ATP-sensitive $K^+$ channel revealed that a 3-barrier 2-site multiple occupancy model can reasonably predict the observed current-voltage relations.

Acknowledgement

Supported by : 한국학술진흥재단