Studies on the Photo-Electrochemical Properties of Ti$O_2$-x Thin Films Prepared by Air Oxidation and Water Vapor Oxidation

공기 산화와 수증기 산화에 의해 제조된 Ti$O_2$-x박막의 광전기화학적 성질에 관한 연구

  • Choi Yong-Kook (Department of Chemistry, Chonnam National University) ;
  • Jo, Gi Hyeong (Department of Chemistry, Chonnam National University) ;
  • Choi Q-Won (Department of Chemistry, Seoul National University) ;
  • Oh Jeong-Geun (Department of Chemistry, Seonam University) ;
  • Seong Jeong-Sub (Department of Chemistry, Chonnam National University)
  • 최용국 (전남대학교 자연과학대학 화학과) ;
  • 조기형 (전남대학교 자연과학대학 화학과) ;
  • 최규원 (서울대학교 자연과학대학 화학과) ;
  • 오정근 (서남대학교 화학과) ;
  • 성정섭 (전남대학교 자연과학대학 화학과)
  • Published : 1993.06.20

Abstract

The titanium oxide thin film was prepared by air oxidation and water vapor oxidation. The photo-electrochemical properties of the electrode was studied in 1M NaOH solution. Titanium dioxide electrodes prepared at higher temperatures were found to have slightly more negative flat band potentials and slightly higher donor densities than their low temperature counterparts. The value of flat band potential ($V_{fb}$) was obtained to be -0.95 ∼ -1.1 V by the measurement of photocurrent and Motte-Schottky plots. The photocurrent of visible region was measured in terms of single crystal filter which entirely blocks the UV radiation. The photo-response of electrodes appeared good with the measument by direct current, when the slit of great resolution was used.

Keywords

References

  1. Appl. Phys. v.48 M. A. Butler
  2. J. Am. Chem. Soc. v.98 M. S. Wrighton;A. B. Ellis;P. T. Wolczanski;D. L. Morse
  3. J. Phys. Chem. v.80 A. B. Ellis;S. W. Kaiser;M. S. Wrighton
  4. J. Electrochem. Soc. v.123 J. H. Kennedy;K. W. Frese
  5. J. Am. Chem. Soc. v.98 M. S. Wrighton;D. L. Morse;A. B. Ellis;D. S. Ginley;H. B. Abrahamson
  6. J. Chem. Phys. v.32 R. Williams
  7. Energy Convers v.25 W. W. Anderson;Y. G. Chai
  8. Ber. Bunsenges. Phys. Chem. v.76 R. A. L. Vanden Berghe;W. P. Gomes
  9. J. Appl. Phys. v.47 R. M. Candea;M. Kastner;R. Goodman;N. Hickok
  10. Electrochim. Acta v.27 Y. Matsumoto;T. Shimizu;E. Sato
  11. Int. J. Hydrogen Energy v.8 K. J. Harting;H. Getoff
  12. Appl. Phys. Lett. v.30 H. Morisaki;M. Hariya;K. Yazawa
  13. Appl. Phys. Lett. v.35 F. Decker;J. F. Juliao;M. Abramovich
  14. J. Phys. Chem. v.86 B.-H. Chen;J. M. White
  15. J. Phys. Chem. v.90 N. Jaffrezic-Renault;P. Pichat;A. Foissy;R. Mercier
  16. J. Electroanal. Chem. v.237 D. Tafalla;P. Savador
  17. J. Phys. Chem. v.89 D. Neil Furlong;D. Wells
  18. J. Phys. Chem. v.84 K. Kong;H. Yoneyama;H. Tamura
  19. J. Phys. Chem. v.92 H. Al-Ekabi;N. Serpone
  20. Solar Engineering-1991 J. Pacheco;M. Prairie;L. Yellowhorse
  21. J. Electrochem. Soc. v.124 A. K. Ghosh;H. P. Maruska
  22. J. Electrochem. Soc. v.139 Y. K. Choi;S. S. Seo;K. H. Chjo;Q. W. Choi;S. M. Park
  23. J. Electrochem. Soc. v.128 M. A. Butler;F. Decker
  24. J. Korean Chemical Society v.18 Q. W. Choi;C. H. Choi;K. H. Chjo;Y. K. Choi
  25. CRC Handbook of chemistry and physics(71st edition) D. R. Lide(ed.)
  26. Solar Energy Conversion-A Photoelectrochemical Approach Yu. V. Pleskov
  27. J. Electrochem. Soc. v.121 F. Moller;H. J. Tolle;R. Memining
  28. Mater. Res. Bull. v.10 J. G. Mavroides;D. I. Tchernev;J. A. Kafalas;D. F. Kolesar
  29. Nature(London) v.238 A. Fujishima;K. Honda
  30. Bull. Chem. Soc. Jpn. v.48 A. Fujishima;K. Kohayakawa;K. Honda
  31. J. Electrochem. Soc. v.122 A. Fujishima;K. Kohayahawa;K. Honda
  32. Proc. Natl. Acad. Sci. U.S.A. v.72 M. S. Wrighton;D. S. Ginley;P. T. Wolczanski;A. B. Ellis;D. L. Morse;A. Linz
  33. J. Electrochem. Soc. v.122 K. L. Hardee;A. J. Bard
  34. Nature(London) v.257 A. J. Nozik
  35. Electrochim. Acta v.20 H. Yoneyama;H. Sakamoto;H. Tamura
  36. J. Am. Chem. Soc. v.98 A. B. Ellis;S. W. Kaiser;M. S. Wrighton
  37. Appl. Phys. Lett. v.29 A. J. Nozik
  38. Appl. Phys. Lett. v.39 W.-T. Kim;C.-H. Choe;Q. W. Choi
  39. Appl. Phys. Lett. v.38 J. G. Mavroides;J. A. Kafalas;D. F. Kolesar
  40. Chem. Phys. Lett. v.100 D. Miller