Study on Temperature Dependence of Molecular Structure in Stearic Acid LB Films Using FTIR-RAS

FTIR-RA 분광법을 이용한 스테아르산 단분자막에서 분자구조의 온도의존성 고찰

  • Kim, Dong Won (Department of Chemistry, Chungbuk National University) ;
  • Park, Sang Rae (Department of Chemistry, Chungbuk National University) ;
  • Umemura Junjo (Institute for Chemical Research, Kyoto University) ;
  • Takeda Satoshi (Institute for Chemical Research, Kyoto University) ;
  • Hasegawa Takeshi (Institute for Chemical Research, Kyoto University) ;
  • Takenaka Tohru (Institute for Chemical Research, Kyoto University) ;
  • Lee Hai Won (Department of Chemistry, Hanyang University)
  • Published : 1993.06.20

Abstract

1-, 3-, 9-, and 21-Monolayer Langmuir-Blodgett(LB) films of stearic acid were deposited on silver-coated glass slides at the surface pressure of 30 mN/m. Fourier transform infrared(FTIR) reflection-absorption spectra (RAS) of these LB films were recorded at various temperatures from 31 to $72^{\circ}C.$ The spectra at $31^{\circ}C$ exhibited characteristic features of highly perpendicular orientation of the hydrocarbon chain. In the 1-monolayer LB film, the C=O stretching band was not observed, presumably due to the image dipole effect on the silver surface. In the 1-and 3-monolayer LB films, the trans isomer of stearic acid was prominent, but the cis isomer was dominant in the 21-monolayer LB film. FTIR-RAS measurements at an elevated temperature indicated that the chain melting temperature increases and approached to the bulk melting point with increasing the number of monolayer, except for the 1-monolayer LB film which has a higher melting temperature than the 3-monolayer film due to the strong interaction with the silver substrate.

Keywords

References

  1. Yukagaku (Oil Chem.) v.36 M. Gotoh
  2. J. Dispersion Sci. Technol. v.10 M. Kobayashi;F. Kaneko
  3. Thin Solid Films v.178 K. Kobayashi;T. Takaoka;S. Ochiai
  4. Chem. Phys. v.97 A. Bonnerot;P. A. Chollet;H. Frisby;M. Hoclet
  5. Crystallization and Polymorphysm of Fats and Fatty Acids M. Kobayashi;N. Garti;K. Sato(eds.)
  6. M. Gotoh
  7. Nippon Kagaku Zasshi v.84 R. Gotoh;T. Takenaka
  8. Memo. Fac. Sci. Kyushu Univ. v.C4 Y. Koga;R. Matsuura
  9. J. Chem. Phys. v.63 S. Hayashi;J. Umemura
  10. J. Chem. Phys. v.68 J. Umemura
  11. J. Mol. Struct. v.36 J. Umemura
  12. J. Mol. Struct. v.69 S. Hayashi;J. Umemura;R. Nakamura
  13. J. Mol. Spectrosc. v.9 R. F. Holland;J. R. Nielsen
  14. Thin Solid Films v.201;211 T. Hasegawa;J. Umemura;T. Takenaka
  15. J. Chem. Phys. v.87 P. T. T. Wong;T. E. Chagwedera;H. H. Mantsch
  16. Chem. Lett. T. Kajiyama;N. Morotomi;M. Uchide;Y. Oishi
  17. Thin Solid Films. v.178 T. Kamata;J. Umemura;T. Takenaka;K. Isomura;H. Taniguti
  18. Langmuir v.2 F. Kimura;J. Umemura;T. Takenaka
  19. Chem. Lett. T. Kamata;J. Umemura;T. Takenaka
  20. Langmuir v.3 T. Kamata;A. Kato;J. Umemura;T. Takenaka
  21. Bull. Inst. Chem. Res. Kyoto Univ. v.65 T. Kamata;J. Umemura;T. Takenaka
  22. Bull. Inst. Chem. Res. Kyoto Univ. v.65 T. Kamata;J. Umemura;T. Takenaka
  23. J. Phys. Chem. v.95 A. M. Bibo;C. M. Knobler;I. R. Peterrson
  24. Proc. SPIE T. Takenaka;J. Umemura;T. Kawai;T. Kamata;N. Koizumi
  25. Chem. Lett. T. Hasegawa;T. Kamata;J. Umemura;T. Takenaka
  26. Langmuir J. Umemura;D. Takeda;T. Hasegawa;T. Kamata;T. Takenaka
  27. J. Phys. Chem. v.92 J. L. Dote;R. L. Mowery
  28. J. Phys. Chem. v.95 T. Kamata;J. Umemura;T. Takenaka;N. Koizumi
  29. J. Chem. Phys. v.82 C. Naselli;J. F. Rabolt;J. D. Swalen
  30. J. Phys. Chem. v.94 J. Umemura;T. Kamata;T. Kawai;T. Takenaka
  31. J. Chem. Phys. v.78 J. F. Rabolt;F. C. Burns;N. E. Schlotter;J. D. Swalen
  32. Thin Solid Films v.178 J. Umemura;Y. Hishiro;T. Kawai;T. Takenaka;Y. Gotoh;M. Fujihira
  33. J. Phys. Chem. v.95 R. M. Kenn;C. Bohm;A. M. Bibo;I. R. Peterson;H. Mohwald;J. Als-Nielsen;K. Kjaer
  34. Adv. Mater v.2 A. M. Bibo;I. R. Peterson
  35. Acta Crystallogr. v.16 R. F. Holland;J. R. Nielsen
  36. Appl. Spectrosc. v.39 N. E. Schlotter;J. F. Rabolt