Electrochemical Reduction of Thionyl Chloride by Tetradentate Schiff Base Transition Metal(II) Complexes : Catalytic Effects

네자리 Schiff Base 전이금속(II) 착물들에 의한 SOCl$_2$의 전기화학적 환원 : 촉매 효과

  • Woo-Seong Kim (Department of Chemistry, Chonnam National University) ;
  • Yong-Kook Choi (Department of Chemistry, Chonnam National University) ;
  • Chan-Young Kim (Department of Chemistry, Chonnam National University) ;
  • Ki-Hyung Chjo (Department of Chemistry, Chonnam National University) ;
  • Jong-Soon Kim (Department of Chemistry, Chonnam National University)
  • 김우성 (전남대학교 자연과학대학 화학과) ;
  • 최용국 (전남대학교 자연과학대학 화학과) ;
  • 김찬영 (전남대학교 자연과학대학 화학과) ;
  • 조기형 (전남대학교 자연과학대학 화학과) ;
  • 김종순 (전남대학교 자연과학대학 화학과)
  • Published : 1993.08.20


Electrochemical reduction of thionyl chloride has been carried out at glassy carbon and molybdenum electrodes, the surface of which is modified by binuclear tetradentate schiff base Co(II), Ni(II),Cu(II) and Fe(II) complexes. The catalyst molecules of transition metal(II) complexes were adsorbed on the electrode surface and reduced thionyl chloride resulting in a generation of oxidized catalyst molecules. There was an optimum concentration for each catalyst compound. The catalytic effects of SOCl$_2$ reduction were larger on glassy carbon electrodes compared to molybdenum electrodes and enhancements in reduction current of up to 120${\%}$ at the glassy carbon electrodes. The reduction currents of thionyl chloride were increased and the reduction potentials were shifted to the negative potential when scan rates became faster. The reduction of thionyl chloride was proceed to diffusion controlled reaction.



  1. Anal. Chem. v.58 C. H. Pyun;S. M. Park
  2. J. Chem. Soc. J. C. Duff
  3. Proceedings of the Symposium Lithium Batteries v.84 no.1 N. Doddapaneni
  4. J. Electrochem. Soc., Spring Meeting v.81-1 N. Doddapaneni
  5. J. Electrochem. Soc., Spring Meeting v.81-2 N. Doddapaneni
  6. Proceedings of the Symposium on Electrochem. Soc. v.84-12 N. Doddapaneni
  7. J. Electrochem. Soc. v.140 Y. K. Choi;B. S. Kim;S. M. Park
  8. J. Electrochem. Soc. v.140 Y. K. Choi;S. M. Park;F. M. Delnick;N. Doddapaneni
  9. Inorg. Chem. v.29 P. A. Bernstein;A. B. P. Lever
  10. J. Electrochem. Soc. v.134 M. J. Madou, J. J. Smith;S. Szpak
  11. J. Electrochem. Soc. v.128 no.4 H. V. Vjenkatasethy;D. J. Saathoff
  12. J. Electrochem. Soc. v.129 no.8 W. K. Istone;R. J. Brodd
  13. J. Electrochem. Soc. v.135 no.5 F. W. Dampier;T. A. Cole
  14. J. Power Sources v.36 P. Atkins;G. T. Hefter;P. Singh
  15. Progress in Batteries and Solar Cells v.9 T. Nagaura;K. Tozawa
  16. J. Power Source v.35 O. A. Baturina(et al.)
  17. J. Power Source v.34 K. M. Abraham
  18. Electrochem. Acta v.37 no.3 K. M. Abraham(et al.)
  19. Thesis, University of California W. S. Harris
  20. High Energy Batteries R. Jasinski
  21. J. Electrochem. Soc. v.126 no.11 W. L. Borden;A. N. Dey
  22. J. Electrochem. Soc. v.127 no.7 W. L. Borden;A. N. Dey
  23. J. Electrochem. Soc. v.127 no.10 K. M. Abraham;R. M. Mank
  24. Thin Solid Films v.43 A. N. Dey
  25. J. Electrochem. Soc. v.120 J. J. Auborn;K. W. French;S. I. Lieberman;V. K. Shah;A. Heller
  26. J. Electrochem. Soc. v.120 W. K. Behl;J. A. Christopusous;M. Ramirez;S. Gilman
  27. Proc. 16th Power Sources Symp. v.26 J. J. Auborn;R. D. Bezman;K. W. French;A. Heller;S. I. Lieberman
  28. Proceedings of the 11th International Power Sources Symposium v.7 G. E. Blomgren;V. Z. Leger;M. L. Kronenberg;T. Kalnoki-Kis;R. J. Brodd;J. Thomson(ed.)
  29. J. Power Source v.21 J. G. Chiu;Y. Y. Wang;C. C. Wan
  30. J. Chem. Eng Data v.28 H. V. Venkatasetty;S. Szpak
  31. Lithium Batteries J. P. Gabano(ed.)
  32. J. Korean Chem. Soc. v.36 K. H. Chjo;Y. K. Choi;S. J. Lee;C. Y. Kim;C. P. Lim
  33. Sandia Report F. M. Delick;W. R. Cieslak
  34. Proc. 32nd Power Symp. N. Doddapaneni
  35. J. Electrochem. Soc. v.86-12 N. Doddapaneni
  36. Electrochemical Methods A. J. Bard;L. R. Faulkner, See