Voltammetric Determination of Cu(II) Ion at a Chemically Modified Carbon-Paste Electrode Containing 1-(2-pyridylazo)-2-naphthol

1-(2-Pyridylazo)-2-naphthol 수식전극을 사용한 Cu(II) 이온의 전압전류법적 정량

  • Jun-Ung Bae (Department of Chemistry, Kyungpook National University) ;
  • Hee Sook Jun (Department of Chemistry, Kyungpook National University) ;
  • Hye-Young Jang (Department of Chemistry, Kyungpook National University)
  • 배준웅 (경북대학교 자연과학대학 화학과) ;
  • 전희숙 (경북대학교 자연과학대학 화학과) ;
  • 장혜영 (경북대학교 자연과학대학 화학과)
  • Published : 1993.08.20

Abstract

Cu(II) ion-responsive chemically modifed electrodes (CMEs) were constructed by incorporating 1-(2-pyridylazo)-2-naphthol (PAN) into a conventional carbon-paste mixture of graphite powder and Nujol oil. Cu(II) ion was chemically deposited on the surface of the PAN-chemically modified electrode in the absence of an applied potential by immersion of the electrode in a buffer solution (pH 3.2) containing Cu(II) ion, and then reduced at a constant potential in 0.1 M KNO$_3$. And a well-defined voltammetric peak could be obtained by scanning the potential to the positive direction. The electrode surface could be regenerated with exposure to acid solution and reused for the determination of Cu(II) ion. In 5 deposition / measurement / regeneration cycles, the response could be reproduced with 6.1${\%}$ relative standard deviation. In case of using the differential pulse voltammetry, the calibration curve for Cu(II) was linear over the range of 2.0 ${times}$ 10$^{-7}$ ∼ 1.0 ${times}$ 10$^{-6}$ M. And the detection limit was 6.0 ${times}$ 10$^{-8}$ M. Studies of the effect of diverse ions showed that Co, Ni, Zn, Pb, Mg and Ag ions added 10 times more than Cu(II) ion did not influence on the determination of Cu(II) ion, except EDTA and oxalate ions.

Keywords

References

  1. Prue Appl. Chem. v.48 I. U. P. A. C. Recommendation for nomenclature of ion-selective electrode
  2. Anal. Chim. Acta v.26 T. Iwanoto;K. Kanamori
  3. Electrochemical Stripping Analysis F. Vydra;K. Stulik;E. Julacova
  4. Stripping Analysis; Principles, Instrumentation and Application J. Wang
  5. Anal. Chem. v.52 J. A. Cox;M. Majda
  6. Anal. Chim. Acta v.149 K. Iztsu;T. Nakamura;R. Takizawa;H. Hanawa
  7. Anal. Chem. v.58 D. M. T. O'Riodan;G. G. Wallace
  8. Anal. Lett. v.20 L. L. McCraken;L. M. Wier;H. D. Abruna
  9. Anal. Chim. Acta v.158 J. Wang;B. Greene;C. Morgan
  10. Bull Korean Chem. Soc. v.11 J. S. Yeom;M. S. Won;S. N. Choi;Y. B. Shim
  11. Anal. Chem. v.63 Z. Gao;G. Wang;P. Li;Z. Zhao
  12. Anal. Chem. v.27 K. L. Cheng;R. H. Brag
  13. Anal. Chem. v.59 S. V. Prabhu;R. P. Baldwin;L. Kryger
  14. Anal. Lett. v.11 G. T. Cheek;R. P. Nelson
  15. Anal. Chem. v.58 R. P. Baldwin;J. K. Christensen;L. Kryger
  16. J. Korean Chem. Soc. v.35 E. D. Jeong;M. S. Won;Y. B. Shim