The Electrocatalytic Reduction of Oxygen by Bis-Cobalt Phenylporphyrins in Various pH Solutions

여러 가지 pH 수용액에서 Bis-Cobalt Phenylporphyrin 유도체들에 의한 산소의 전극 촉매적 환원

  • Yong-Kook Choi (Department of Chemistry, Chonnam National University) ;
  • Ki-Hyung Chjo (Department of Chemistry, Chonnam National University) ;
  • Jong-Ki Park (Department of Chemistry, Chonnam National University)
  • 최용국 (전남대학교 자연과학대학 화학과) ;
  • 조기형 (전남대학교 자연과학대학 화학과) ;
  • 박종기 (전남대학교 자연과학대학 화학과)
  • Published : 1993.08.20

Abstract

The electrocatalytic reduction of oxygen is investigated by cyclic voltammetry and chronoamperometry at glassy carbon electrode and carbon microelectrode coated with a variety of cobalt phenylprophyrins in various pH solutions. Oxygen reduction catalyzed by the monomeric porphyrin Co(Ⅱ)-TPP mainly occurs through the 2e$^-$ reduction pathway resulting in the formation of hydrogen peroxide whereas electrocatalytic process carried out 4e$^-$ reduction pathway of oxygen to H$_2$O at the electrodes coated with cofacial bis-cobalt phenylporphyrins in acidic solution. The electrocatalytic reduction of oxygen is irreversible and diffusion controlled. The reduction potentials of oxygen in various pH solutions have a straight line from pH 4 to pH 13, but level off in strong acidic solution. The reduction potentials of oxygen shift to positive potential more 400 mV at the electrode coated with monomer Co-TPP compound than bare glassy carbon electrode while 750 mV at the electrode coated with dimer Co-TPP compound.

Keywords

References

  1. Electroanalysis v.3 A. Sucbeta;J. F. Rusling
  2. J. Electrochem. Soc. v.112 K. E. Gubbins;R. D. Walker
  3. J. Electroanal. Chem. v.291 R. Jiang;S. Dong
  4. J. Electroanal. Chem. v.134 R. R. Durand Jr;F. C. Anson
  5. J. Am. Chem. Soc. v.114 R. Karaman;A. Blasco;O. Almasson;R. Arasasingham;T. C. Bruice
  6. Electrochemical Methods A. J. Bard;L. R. Faulkner
  7. J. Electroanal. Chem. v.112 P. Fischer;J. Heitbaum
  8. J. Electrochem. Soc. v.126 J. C. Huang;R. K. Sen;E. Yeager
  9. Phys. Chem. v.85 J. A. R. Van Veen;H. A. Colijn
  10. J Catal. v.44 A. J. Appleby;J. Fleisch;M. Savy
  11. J. Am. Chem. Soc. v.102 J. P. Collman;P. Denisevich;Y. Konai;M. Marrocco;C. Koval;F. Anson
  12. J. Electroanal. Chem. v.132 K. Shigehara;F. Anson
  13. J. Electroanal. Chem. v.200 A. Elzing;A. Van Der Putten;W. Visscher;E. Barendrecht
  14. J. Electroanal. Chem. v.297 J. Ouyang;K. Shigehara;A. Yamada;Fred C. Anson
  15. Inorg. Chem. v.27 J. P. Collman;N. H. Hendricks;C. R. Leidner;E. Ngameni
  16. J. Electrochem. Soc. v.106 M. Davies;M. Clark;E. Yesger;F. Hovorka
  17. J. Electrochem. Soc. F. Anson
  18. J. Electrochem. Soc. v.127 J. Zagal;P. Bindra;E. Yeager
  19. J. Am. Chem. Soc. v.103 T. Geiger;F. C. Anson
  20. Inorg. Chem. v.16 D. Sawyer;E. Seo
  21. Inorg. Chem. v.16 R. K. Sen;J. Zagal;Yeager
  22. Electrochim. Acta v.15 I. Morcos;E. Yeager
  23. J. Electrochem. Soc. v.125 R. Zurilla;R. Sen;E. Yeager
  24. J. Electrochem. Soc. v.113 A. Kozawa;V. E. Zilionis;R. J. Brodd
  25. J. Electroanal. Chem. v.103 B. Z. Nikolic;R. R. Adzic;E. B. Yeager
  26. J. Electroanal. Chem. v.83 J. Zagal;R. K. Sen;E. Yeager
  27. J. Electrochem. Soc. v.131 R. A. Bull;F. R. Fan;A. J. Bard
  28. J. Electroanal. Chem. v.196 S. Zecevic;B. Simic-Glavaski;E. Yeager
  29. Nature v.201 R. Jasinski
  30. J. Electroanal. Chem. v.221 A. Van Der Putten;A. Elzing;W. Visscher;E. Barendrecht
  31. Phys. Chem. v.85 J. A. R. Van Veen;J. G. F. Collegan;J. F. Van Baar;N. de Wit;C. J. Kroese;H. A. Colijn;Ber. Bunsenges
  32. J. Electroanal. Chem. v.88 T. Kuwana;M. Fujihira;K. Sunnakawa;T. Ossa
  33. J. Electroanal. Chem. v.2 D. T. Sawyer;L. V. Interrante
  34. Anal. Chem. v.57 A. S. Baranski;W. R. Fawcett;C. M. Gilbert
  35. J. Am. Chem. Soc. v.105 R. R. Durand, Jr.;C. Susana Bencosme;J. P. Collman;F. C. Anson
  36. Ace. Chem. Res. v.12 J. Wilshire;D. T. Sawyer
  37. J. Electroanal. Chem. v.214 A. Van Der Putten;A. Elzing;W. Visscher;E. Barendrecht