The Reaction of the Tripledecker Complexes, 4(CpCo)_2(C_4R_4)$ and Alkynes

Tripledecker 착물, $(CpCo)_2(C_4R_4)$과 Alkyne과의 반응

  • Uhm, Jae-Kook (Department of Chemistry, Keimyung University) ;
  • Lee, Won-Sik (Department of Chemistry, Keimyung University) ;
  • Kim, Seog-Bong (Department of Chemistry, Keimyung University) ;
  • Cha, Jin-Soon (Department of Chemistry, Yeungnam University) ;
  • Lee, Hyung-Soo (Department of Chemistry Education, Hyosung Women's University) ;
  • Lee, Dong-Ho (Department of Polymer Science, Kyungpook National University) ;
  • Kim, Hong-Seok (Department of Industry Chemistry, Kyungpook National University) ;
  • Sim, Sang-Chul (Department of Industry Chemistry, Kyungpook National University)
  • 엄재국 (계명대학교 자연과학대학 화학과) ;
  • 이원식 (계명대학교 자연과학대학 화학과) ;
  • 김석봉 (계명대학교 자연과학대학 화학과) ;
  • 차진순 (영남대학교 이과대학 화학과) ;
  • 이형수 (효성여자대학교 사범대학 화학교육과) ;
  • 이동호 (경북대학교 공과대학 고분자공학과) ;
  • 김홍석 (경북대학교 공과대학 공업화학과) ;
  • 심상철 (경북대학교 공과대학 공업화학과)
  • Published : 1993.09.20

Abstract

The tripledecker complexes, bis-(${\eta}^5-cyclopentadienyl)-{\mu}-({\eta}^4-1,2,3,4-tetraalkylcyclobutadiene$)dicobalt were produced by the reaction of Jonas reagent with 2-hexyne and 3-hexyne in the maximum yield (above 50%) when they were reacted in eq-molar amounts at room temperature. A tripledecker complex, bis-${\eta}^5-cyclopentadienyl)-{\mu}-({\eta}^4-1,2,3,4-tetraethyl cyclobutadiene$)dicobalt(13) was isomerized to (${\eta}^5-cyclopentadienyl)cobaltacyclopentadiene-{\mu}-({\eta}^4-2,4-cobaltacyclopentadiene$)(${\eta}^5-cyclopentadienyl$)cobalt(15) on reacting with 3-hexyne at room temperature. Another tripledecker complex, bis-(${\eta}^5-cyclopentadienyl)-{\mu}-({\eta}^4-1,3-dimethyl-2,4-dipropyl cyclobutadiene$)dicobalt(14) was decomposed to give 1,3,5-trimethyl-2,4,6-tripropylbenzene through an intermediate complex by the reaction of 2-hexyne.

Keywords

References

  1. J. Kor. Chem. Soc. v.34 J. K. Uhm;D. Hu;U. Zenneck;H. Pritzkow;W. Siebert
  2. J. Kor. Chem. Soc. v.35 J. K. Uhm;Y. B. Park;S. I. Byun;H. Lee;Y. W. Kwak;T. J. Kim
  3. Angew. Chem. v.70 M. Schuetze
  4. Angew. Chem. Int. Ed. Engl. v.18 K. Jonas;L. Schieferstein;C. Krueger;Y. H. Tsay
  5. Angew. Chem. Int. Ed. Engl. v.22 K. Jonas
  6. J. Am. Chem. Soc. v.94 M. Rosenblum;S. North;D. Wells;W. P. Giering
  7. J. Am. Chem. Soc. v.98 J. W. Lauher;M. Elian;R. H. Summerville;R. Hoffmann
  8. J. Am. Chem. Soc. v.102 K. Yasufuk;A. Hamada;K. Aoki;H. Yamazaki
  9. Angew. Chem. Int. Ed. Engl. v.29 R. Gleiter;D. Kratz
  10. Angew. Chem. v.96 K. P. C. Vollhardt
  11. Angew. Chem. v.97 W. Siebert
  12. Int. Ed. Engl. v.24 W. Siebert
  13. Chem. Ber. v.123 K. F. Worner;J. K. Uhm;H. Pritzkow;W. Siebert
  14. Ph. D. Dissertation, Univ. Heidelberg J. K. Uhm
  15. Angew. Chem. v.92 K. Jonas;C. Kruger
  16. Angew. Chem. v.95 K. Jonas;E. Deffense;D. Haberman
  17. Chem. Ber. v.119 U. Koelle;B. Fuss
  18. Ph. D. Dissertation, Univ. Marburg H. Wadepohl