Phase Equilibria of the System Pd-Sb-Te and Its Geological Implications

팔라듐-안티몬-테루르 계(系)의 상평형(相平衡)과 지질학적(地質學的) 의의(意義)

  • Kim, Won-Sa (Department of Geology, Chungnam National University) ;
  • Chao, George Y. (Department of Earth Sciences, Carleton University)
  • Received : 1993.06.19
  • Published : 1993.06.30


Phase relations in the system Pd-Sb-Te were investigated at $1000^{\circ}$, $800^{\circ}$, and $600^{\circ}C$, using the sealed-capsule technique; the quenched products were studied by reflected light microscopy, X-ray diffraction, and electron microprobe analysis. At $1000^{\circ}C$, the solid phases Pd, $Pd_{20}Sb_7$, $Pd_8Sb_3$, $Pd_{31}Sb_{12}$, and $Pd_5Sb_2$ are stable with a liquid phase that occupies most of the isothermal diagram. Additional solid phases at $800^{\circ}C$ are $Pd_5Sb_3$, PdSb, $Pd_8Te_3$, $Pd_7Te_3$, and a continuous $Pd_{20}Te_7-Pd_{20}Sb_7$ solid solution becomes stable. At $600^{\circ}$, $PdSb_2$, $Pd_{17}Te_4$, $Pd_9Te_4$, PdTe, $PdTe_2$, $Sb_2Te_3$, and Sb and continuous PdSb-PdTe and $PdTe-PdTe_2$ solid solutions are stable. All the solid phases exhibit solid solution, mainly by substitution between Sb and Te to an extent that varies with temperature of formation. The maximum substitution (at.%) of Te for Sb in the Pd-Sb phases is: 44.3 in $Pd_8Sb_3$, 52.0 in $Pd_{31}Sb_{12}$, 46.2 in $Pd_5Sb_2$ at $800^{\circ}C$; 15.3 in $Pd_5Sb_3$, 68.3 in $PdSb_2$ at $600^{\circ}C$. The maximum substitution (at.%) of Sb for Te in the Pd-Te phases is 34.5 in $Pd_5Sb_3$ at $800^{\circ}C$, and 41.6 in $Pd_7Te_3$, 5.2 in $Pd_{17}T_4$, 12.4 in $Pd_9Te_4$, and 19.1 in $PdTe_2$ at $600^{\circ}C$. Physical properties and X-ray data of the synthetic $Pd_9Te_4$, PdTe, $PdTe_2$, $Pd_8Sb_3$, PdSb, and $Sb_2Te_3$ correspond very well with those of telluropalladinite, kotulskite, merenskyite, mertieite II, sudburyite, and tellurantimony, respectively. Because X-ray powder diffraction data consistently reveal a 310 peak ($2.035{\AA}$), the $PdSb_2$ phase is most probably of cubic structure with space group $P2_13$. The X-ray powder pattern of a phase with PdSbTe composition, synthesized at $600^{\circ}C$, compares well with that of testibipalladite. Therefore, testibiopalladite may be a member of the $PdSb_2-Pd(Sb_{0.32}Te_{0.68})$ solid solution series which is cubic and $P2_13$ in symmetry. Thus the ideal fonnula for testibiopalladite, presently PdSbTe, must be revised to PdTe(Sb, Te). Borovskite($pd_3SbTe_4$) has not been found in the synthetic system in the temperature range $1000^{\circ}-600^{\circ}C$.



Supported by : Center for Mineral Resources Research