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ABSTRACT

In this paper, the robustness of the arti-
ficial neural networks to noise is demon-
strated with a mulfilayer perceptron, and
the reason of robustness is due to the statisti-
cal orthogonality among hidden nodes and
its hierarchical information extraction capa-
bility. Also, the misclassification probabil-
ity of a well-trained multilayer perceptron is
derived without any linear approximations
when the inputs are contaminated with ran-
dom noises. The misclassification prob-
ability for a noisy pattern is shown to be
a function of the input pattern, noise vari-
ances, the weight matrices, and the nonlin-
ear transformations. The result is verified
with a handwritten digit recognition prob-
lem, which shows hetter result than that us-
ing linear approximations.
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I. INTRODUCTION

Neural networks are employed in most pat-
tern classification applications since they have
learning ability and provide a greater degree
of robustness than von Neumann sequential
computers [1]. It is believed that these prop-
erties are achieved via dense interconnection
of many nonlinear computational elements. In
order to investigate the robustness, Stevenson
et al. derived the misclassification probabil-
ity of Madaline due to weight or input pertur-
bation, assuming input patterns are distributed
uniformly over the input space and the weights
have arbitrary values [2]. However, the input

patterns are sampled from the original pop- -

ulation which is rarely uniform distribution,
and the misclassification probability is surely a
function of the trained weights. Also, Xie and
Jabri derived the effects of quantization under
the unrealistic assumption that the inputs, the
trained weights, and the weighted sums are dis-
tributed uniformly in certain ranges [3]. Choi
et al. used the first order Taylor approximation
method [4], however this has limited range of
application.

In this paper, we explain the robustness of
Multilayer Perceptrons(MLPs) to noise and de-
rive the misclassification probability when the
input patterns are contaminated with random
noises [5]. In section 11, the reasons for the ro-
bustness to noise, namely, “noise immunity”,
is logically analyzed. In section III, we de-
rive the misclassification probability of a sin-
gle hidden-layer perceptron without any lin-
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ear approximation. Since the derived result
needs intensive computation, we suggest sim-
pler method in section IV, which considers a
subset of the output nodes consisting of the tar-
get node and the most active non-target node
and utilizes the function approximation capa-
bility of MLPs. This result is verified with a
handwritten digit recognition problem, which
is described in section V, and section VI con-
cludes this paper.

Il. NOISE IMMUNITY OF
MULTILAYER PERCEPTRONS

It is well known that MLPs are robust to
noise contamination in inputs and/or weights,
including the case of quantization. In this sec-
tion, we explain how MLPs have these proper-
ties in two ways. First, the orthogonal property
among the output values of the hidden nodes re-
duces the noise effect. It is well known that the
hidden weight vectors tend to be near orthog-
onal through learning procedure for efficient
feature extraction of input patterns [6]. Thus,
after successful learning, the weighted sums
to hidden nodes are much less correlated even
when a pattern with correlated noise is pre-
sented to the input layer. Also, the magnitude
of correlation coefficient between the weighted
sums decreases under the sigmoidal transfor-
mations [7]. Therefore, the correlations among
hidden nodes should be very small. As a re-
sult, the noise effects are averaged out when
the hidden output values are summed through
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output weights. Second, noise immunity of
MLPs can be explained in the information-
theoretic point of view [8]. It is reported that
MLPs have hierarchical information extraction
capabilities acquired through learning [9]. Tt
is argued there that the input pattern set has
the inter-class information as well as the intra-
class variation. The inter-class information is
the information content that an input pattern
belongs to a specific class, and the intra-class
variation is a measure of the average variations
within the classes including noise contamina-
tions. After learning, each layer of MLPs tries
to keep the inter-class information and to min-
imize the intra-class variation as much as pos-
sible. When a noisy pattern is presented to the
input, MLPs extract the inter-class information
and suppress the noise components, yielding
noise immunity of MLPs. In the next section,
we derive the misclassification probability of

single hidden-layer perceptrons,

{1l. PROBLEM FORMULATION

In this section, we derive the misclassifica-
tion probability of an MLP when the inputs are
contaminated with additive Gaussian noises.
Consider a well-trained single hidden-layer
perceptron with N inputs, H hidden nodes,
and M output nodes. When a training pat-
tern x® = [x\7, . x®P|T is contaminated
with an independent, identically distributed (i.
i. d.) Gaussian noise X" = [x],x], .. .,xg,]T

with zero-mean and standard deviation oy, the
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input is
x=xP 4 x", (1)

and the weighted sum to the jth hidden node
can be written as

N
aj=a’+> wpx!, j=12,...,H (2)
i=1
where W= (wj;) is the weight matrix from the
input to the hidden layer and

N
a}p)éwjo—i—ijixi(p). 3)
i=1
The case when the additive noises are not i.i.d.
Gaussian but finite variances is discussed at
the end of section V. It is easy to show thata=
[a1,a2,...,a H]T is a Gaussian random vector
[10], and its probability density function(p.d.
f.) is given by

1
exp[—i(a— E[a)T

1
(@) = e
= T

CHa—E[a])] 4)

where C = (C;;) is the covariance matrix of a
whose (i, j)th element is
N

2
Cij=04;0q;rij =0} E wipwjx. (3)
k=1

Here, r;; denotes the correlation coefficient
between a; and a;. The output random vector
h=T[hy, hy. ..., hg]T of the hidden layer can

be calculated using

2

M repean - ©
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Hence, the p.d.f. of h can be derived [10] as

1
h)=
= e am)
—Tl -11,...
S A | N
—-T1 -1 7
n[hH+1 ]) ()
where
Jh(alaaZv'-'1aH)=(ﬁ) lg(l_hk)

(8)
It is clear that h is not Gaussian vector. How-
ever, it is easy to see that the elements of h have

finite variances.

The weighted sum to the kth output node is

H
bi=uo+ Y vghj, k=1,2,...M (9
j=1

where V = (vy;) is the weight matrix between
the hidden layer and the output layer. To cal-
culate the p.d.f. of by, we introduce H — M
auxiliary variables [10], i.e.,

bi=he, k=M+1,M+2,... . H. (10)

Letting
:Bz [bl —V10s---» bM — VMO, bM+17 LEEE bH]T’
it can be represented as

B=Zh (11)
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where
[ vi1 - vimer oo vig )
V21 - UM+l V2H
Z=| vpm1 --- UMM+1 " UMH (12)
1 0
0]
| 1

If the output weight matrix V is of full rank, Z
should be non-singular. Thus, the inverse of Z
exists and

h=27"13. (13)

The p.d.f. of 3 is given by

f(Z7B)

fﬁ(ﬁ):U(hl,hz,...,hH)l

(14)

where J(hy,...,hy) is the Jacobian of Egq.
(11). The p.d.f. of b=[by, b2, ..., bp]7 can
be obtained by integrating Eq. (14) on all the
auxiliary variables, i.e.,

fo(b) =

and the probability of misclassification when
x'?) is in the class corresponding to the first
output node can be calculated by

Pr(E,) =

(o) b]

1~f fo(b)dbyy ...dbadby. (16)
-0 J—oo

Calculating Pr(E,) involves H-dimensional

integration, which is computationally inten-

sive.



ETRI Journal, volume 16, number 1, April 1994

IV. TWO NODE
APPROXIMATION

In the previous section, we have considered
all output nodes to calculate the probability of
misclassification. Since the misclassification
mainly occurs between the target node b, and
the output node by with the largest oy, /| E [bi]l,
we try to approximate the probability consid-
ering only the joint p.d.f. of the two nodes.

Since the hidden node values have finite

variances, the central limit theorem [10] can be

applied for large H with the fact that the corre-
lations among them are small [7]. Thus, they
can be approximated as asymptotically joint
Gaussian random variables and their p.d.f. is

1
(br, bg) =
f (b by 27 0p,0by /1 —1eg?
1 _ 2
« exp[— ((bt Nb,)

20~rg?) " op?

]

(br — np, ) (by — 11,,)

b, Oby

—2r,¢

(bp —np
+L.L
Ubdz

)] (17)

where the means 7y,, 7s,, the variances op,%,
op ¢2, and the correlation coefficient r,4 can be
calculated by

H
Ny :vko—i-kajE[hj], k=t,¢, (18)
j=1

H
2 _ 2
Op, = Z(Ukjdh,)
j=1
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H-1 H

+23° 3 vgugCLY, k=t,6,(19)

i=1 j=i+1

and

(Z Uyj U¢]GIl,

4’ ]--1

n Z Z (ivg; +vgive)C) (20)

i=1 j=i+1

Here, o03;” is the variance of h; and C fjh) can
be calculated as

C(h) =0}, 04 ]rl(Jh) (21)

(h)

where rij is the correlation coefficient be-

tween k; and & ;. Forward computing the prob-
ability, we should know E [i;), E[h?], and r,?.
E[h;] and E [hiz] can be calculated through

the numerical integration using the p.d.f.of
&) 4

ij
two dimensional, which also needs intensive
(h .

a;.But, the numerical integration for r;
computation. Noting that r;;” is a continuous
function of Efa;], oy, ,E[a,],aaiz, and r;;.
it can be approximated using an MLP [11].
This MLP, called as “correlation MLP” in
this paper, consists of five inputs, thirteen
hidden nodes, and one output node. The five
inputs are E[a;], 04,2,

which can be calculated using Eq. (2) and
(h)

Elaj],04,%, and rij,
(5) for given cr, , and the output is r;;” which
is the correlation coefficient after sxgmoidal
transformation. This MLP is trained with
77,824 training data sets and tested with
10,000 data sets. The mean squared error for
the test data is 0.0004. This result is accurate
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enough to replace the numerical integration
for r,.(;’ ) with the correlation MLP. Using these

results, the probability of misclassification
with given x'”) and o7 can be approximated as

Pr(E,) =~
1 /wexp[_ =),
O'br'\/zTL' —00 201)21
1 b, — b, —
G (- (C ey T g,
1-r2 O o,

(22)
which involves only one dimensional integra-
tion. Here, G(.) is the Gaussian distribution
function. We verify the result in Eq. (22) with
a handwritten digit recognition problem, which
is described in the next section.

V. SIMULATION RESULT

To verify the derivation, input noise im-
munity of an MLP is simulated on a handwrit-
ten digit recognition problem. 3,000 handwrit-
ten digit images of size 16 x 16 pixels gathered
from 40 persons are used for training. We use
thinning, feature extraction (4 directional fea-
tures and 4 branch features), and dimension
reduction for preprocessing, yielding 128 di-
mensional data. The MLP consists of 128 in-
puts, 19 hidden nodes, and 10 output nodes.
After successful training, we add zero mean,
independent Gaussian random noises with var-
ious o7 to the training patterns, and estimate
the probability of misclassification.

For investigating the input noise immunity
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of the digit “7”, 70 patterns are randomly se-
lected from 300 training patterns for “7”. The
misclassification probability of a pattern for
given o is estimated by a simulation of 1,000
times, and the simulated results for the 70 pat-
terns are averaged to draw the solid line with
circles in Fig. 1. Also, the calculated results
for them using Eq. (22) are averaged to draw
the solid line in Fig. 1. The calculations give
a closer bound than that using linear approxi-
mations by Choi et al. [4]. They approximated
the sigmoidal activation function with first or-
der Taylor series approximation in order to de-
rive the sensitivity of MLPs. Using this ap-
proximation, the approximated output values
of saturated hidden nodes have smaller vari-
ances than the real ones and the misclassifica-
tion probability has large errors as shown in
Fig. 1. However, there are differences between
the calculations using Eq. (22) and the sim-
ulations. The reasons of the differences are
the two node approximatfon and the assump-
tion that the weighted sums to output nodes are
jointly Gaussian. With large variance of input
noise, the weighted sums to output nodes tend
to have Gamma distributions rather than Gaus-
stan. Fig. 2 is a similar result averaged for all
digits,

The input noise immunity for test patterns
can be calculated with the same method by us-
ing test patterns in Eq. (1) instead of training
patterns. This result can be applied to select
the optimal weight set from many weight sets
acquired through a number of learning trials.
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Fig. 1. Additive noise variance vs. corresponding prob-
ability of misclassification for the digit patterns
“7”.
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Fig. 2. Additive noise variance vs. corresponding prob-
ability of misclassification for all digit patterns.

Among these weight sets, an MLP with the
optimal set will have the best generalization
capability and the best input noise immunity.
In section III and IV, the contaminated
noises are assumed to be i.i.d. Gaussian ran-
dom noises. This assumption is valid if we
deal with the measurement noise of sensors
such as scanner, CCD camera etc. When we
deal with the variations such as thickness,
writing style, and the variations of handwritten
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characters, the additive noises can be neither
i.id. nor Gaussian. But, it is still true that
they have finite variances. Thus, we need to
calculate only E[a;], 0,2, and r;; according
to the statistical property of the additive
noises, and we can use the same procedure for
computing the misclassification probability
since the weighted sums to hidden nodes
are jointly Gaussian random variables by the
central limit theorem.

Vi. CONCLUSION

In this paper, we investigate the noise im-
munity of MLPs and derive the misclassifica-
tion probability of a well-trained single-hidden
layer perceptron when the input patterns are
contaminated with random noises. Since the
derived result involves high dimensional inte-
gration, we suggest a simpler method which
needs only one dimensional integration. The
simpler method considers only a subset of out-
put nodes consisting of the target node and the
non-target node which has the largest noise ef-
fect, and utilizes the function approximation
capability of MLPs. This result is verified with
a handwritten digit recognition problem, which
shows better result than that using linear ap-
proximations. The proposed method can be
applied to select the optimal weight set from
many weight sets trained. Extension of this re-
sult to random binary additive noises will be

practically valuable.
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