Comparable Structural Stabilities of Penta- and Hexa-coordinate Zn(II) in a Simple Model System of the Active Site of Carboxypeptidase A

  • Sik Lee (Center for Biofunctional Molecules and Department of Chemistry, Pohang University of Science and Technology) ;
  • Seung Joo Cho (Center for Biofunctional Molecules and Department of Chemistry, Pohang University of Science and Technology) ;
  • Jong Keun Park (Center for Biofunctional Molecules and Department of Chemistry, Pohang University of Science and Technology) ;
  • Hag-Sung Kim (Center for Biofunctional Molecules and Department of Chemistry, Pohang University of Science and Technology) ;
  • Kim Kwang S. (Center for Biofunctional Molecules and Department of Chemistry, Pohang University of Science and Technology)
  • Published : 1994.09.20

Abstract

Ab initio studies of simple model systems for the carboxypeptidase A active site indicate that penta-and hexa-coordinate Zn(II) complexes have comparable structural stabilities. These facile coordination structures can be responsible for the catalytic role. Although the hexa-coordinate Zn(II) complex is more stable in enthalpy than the penta-coordinate Zn(II) complex, the entropy effect makes the latter as stable as or slightly more stable in free energy than the former.

Keywords

References

  1. Acc. Chem. Res. v.22 Christianson, D. W.;Lipscomb, W. N.
  2. J. Am. Chem. Soc. v.109 Schepartz, A.;Breslow, R.
  3. J. Biolog. Chem. v.236 Coleman, J. E.;Vallee, B. L.
  4. J. Mol. Biol. v.168 Rees, D. C.;Lewis, M.;Lipscomb, W. N.
  5. Biochem. v.30 Kim, H.;Lipscomb, W. N.
  6. J. Mol. Biol. v.223 Mangani, S.;Carloni, P.;Orioli, P.
  7. Chem. Phys. Lett. v.197 Mhin, B. J.;Lee, S.;Cho, S. J.;Lee, K.;Kim, K. S.
  8. Chem. Phys. Lett. v.216 Kim, K. S.;Lee, S.;Mhin, B. J.;Cho, S. J.;Cho, S. J.;Kim, J.
  9. Inorg. Chem. v.29 Bertini, I.;Luchinat, C.;Rosi, M.;Sgamellotti, A.;Tarantelli, F.
  10. J. Am. Chem. Soc. v.114 Garmer, D. R.;Krauss, M.
  11. J. Chem. Phys. v.53 Dunning, T. H.
  12. Gaussian 92. Frisch, M. J.;Trucks, G. W.;Head-Gordon, M.;Gill, P. M. W.;Wong, J. B. F.;Johnson, B. G.;Schlegel, H. B.;Robb, M. A.;Replogle, E. S.;Gomperts, R.;Andres, J. A.;Raghavachari, K.;Binkley, J. S.;Gonzalez, C.;Martin, R. L.;Fox, D. J.;Defrees, D. J.;Baker, J.;Stewart, J. J. P.;Pople, J. A.
  13. Mol. Phys. v.19 Boys, S. F.;Bernardi, F.
  14. J. Compput. Chem. v.8 Koehler, J. E. H.;Saenger, W.;Lesyng, B.
  15. J. Chem. Phys. v.97 Kim, K. S.;Mhin, B. J.;Choi, U.-S.;Lee, K.
  16. Chem. Phys. Lett. v.117 Pullman, A.;Claverie, P.;Cluzan, M. C.
  17. Phys. Rev. v.48 no.A Mhin, B. J.;Lee, S. J.;Kim, K. S.
  18. Chem. Phys. v.123 Schroder, K.-P.
  19. J. Chem. Phys. v.95 Grev, R. S.;Jasson, C. L.;Schaefer III, H. F.
  20. J. Phys. Chem. v.87 Del Bene, J. E.;Mettee, H. D.;Frisch, M. J.;Luke, B. T.;Pople, J. A.
  21. J. Chem. Phys. v.94 Bauschlicher, Jr., C. W.;Langhoff, S. R.;Partridge, H.
  22. CRC Handbook of Chemistry and Physics Wast, R. C.;Lide, D. R.(Eds.)
  23. Acc. Chem. Res. v.25 Suh, J.
  24. J. Phys. Chem. v.97 Pappalardo, R. R.;Marcos, E. S.
  25. J. Am. Chem. Soc. v.113 Kim, D. H.;Kim, K. B.
  26. Zinc Enzymes Bertini, I.;Luchinat, C.;Maret, W.;Zeppezauer, M.(Eds.)
  27. J. Chem. Phys. v.89 Szalewicz, K.;Cole, S. J.;Kolos, W.;Bartlett, R. J.