Comparable Structural Stabilities of Penta- and Hexa-coordinate Zn(II) in a Simple Model System of the Active Site of Carboxypeptidase A

  • Sik Lee (Center for Biofunctional Molecules and Department of Chemistry, Pohang University of Science and Technology) ;
  • Seung Joo Cho (Center for Biofunctional Molecules and Department of Chemistry, Pohang University of Science and Technology) ;
  • Jong Keun Park (Center for Biofunctional Molecules and Department of Chemistry, Pohang University of Science and Technology) ;
  • Hag-Sung Kim (Center for Biofunctional Molecules and Department of Chemistry, Pohang University of Science and Technology) ;
  • Kim Kwang S. (Center for Biofunctional Molecules and Department of Chemistry, Pohang University of Science and Technology)
  • Published : 1994.09.20

Abstract

Ab initio studies of simple model systems for the carboxypeptidase A active site indicate that penta-and hexa-coordinate Zn(II) complexes have comparable structural stabilities. These facile coordination structures can be responsible for the catalytic role. Although the hexa-coordinate Zn(II) complex is more stable in enthalpy than the penta-coordinate Zn(II) complex, the entropy effect makes the latter as stable as or slightly more stable in free energy than the former.

Keywords

References

  1. Zinc Enzymes Bertini, I.;Luchinat, C.;Maret, W.;Zeppezauer, M.(Eds.)
  2. Acc. Chem. Res. v.22 Christianson, D. W.;Lipscomb, W. N.
  3. J. Am. Chem. Soc. v.109 Schepartz, A.;Breslow, R.
  4. Acc. Chem. Res. v.25 Suh, J.
  5. J. Am. Chem. Soc. v.113 Kim, D. H.;Kim, K. B.
  6. J. Biolog. Chem. v.236 Coleman, J. E.;Vallee, B. L.
  7. J. Mol. Biol. v.168 Rees, D. C.;Lewis, M.;Lipscomb, W. N.
  8. J. Phys. Chem. v.97 Pappalardo, R. R.;Marcos, E. S.
  9. Biochem. v.30 Kim, H.;Lipscomb, W. N.
  10. J. Mol. Biol. v.223 Mangani, S.;Carloni, P.;Orioli, P.
  11. Chem. Phys. Lett. v.197 Mhin, B. J.;Lee, S.;Cho, S. J.;Lee, K.;Kim, K. S.
  12. Chem. Phys. Lett. v.216 Kim, K. S.;Lee, S.;Mhin, B. J.;Cho, S. J.;Cho, S. J.;Kim, J.
  13. Inorg. Chem. v.29 Bertini, I.;Luchinat, C.;Rosi, M.;Sgamellotti, A.;Tarantelli, F.
  14. J. Am. Chem. Soc. v.114 Garmer, D. R.;Krauss, M.
  15. J. Chem. Phys. v.53 Dunning, T. H.
  16. Gaussian 92. Frisch, M. J.;Trucks, G. W.;Head-Gordon, M.;Gill, P. M. W.;Wong, J. B. F.;Johnson, B. G.;Schlegel, H. B.;Robb, M. A.;Replogle, E. S.;Gomperts, R.;Andres, J. A.;Raghavachari, K.;Binkley, J. S.;Gonzalez, C.;Martin, R. L.;Fox, D. J.;Defrees, D. J.;Baker, J.;Stewart, J. J. P.;Pople, J. A.
  17. Mol. Phys. v.19 Boys, S. F.;Bernardi, F.
  18. J. Compput. Chem. v.8 Koehler, J. E. H.;Saenger, W.;Lesyng, B.
  19. J. Chem. Phys. v.89 Szalewicz, K.;Cole, S. J.;Kolos, W.;Bartlett, R. J.
  20. J. Chem. Phys. v.97 Kim, K. S.;Mhin, B. J.;Choi, U.-S.;Lee, K.
  21. Chem. Phys. Lett. v.117 Pullman, A.;Claverie, P.;Cluzan, M. C.
  22. Phys. Rev. v.48 no.A Mhin, B. J.;Lee, S. J.;Kim, K. S.
  23. Chem. Phys. v.123 Schroder, K.-P.
  24. J. Chem. Phys. v.95 Grev, R. S.;Jasson, C. L.;Schaefer III, H. F.
  25. J. Phys. Chem. v.87 Del Bene, J. E.;Mettee, H. D.;Frisch, M. J.;Luke, B. T.;Pople, J. A.
  26. J. Chem. Phys. v.94 Bauschlicher, Jr., C. W.;Langhoff, S. R.;Partridge, H.
  27. CRC Handbook of Chemistry and Physics Wast, R. C.;Lide, D. R.(Eds.)