Effects of Temperature and n-Alcohols (Propanol, Butanol, Pentanol and Hexanol) on the Micellization of Cetyltrimethylammonium Bromide

Cetyltrimethylammonium Bromide의 미셀화 현상에 미치는 온도 효과 및 n-알코올(프로판올, 부탄올, 펜탄올 및 헥산올) 효과

  • 이병환 (한국기술교육대학교 교양학과)
  • Published : 19940800

Abstract

The critical micelle concentration(CMC) and the counterion binding $constant(\beta)$ at the CMC of cetyltrimethylammonium bromide(CTAB) in a series of aqueous solutions containing medium chain-length n-alcohols(Propanol, Butanol, Pentanol and Hexanol) have been determined from the concentration dependence of electrical conductance at serveral temperature from $17^{\circ}C\;to\;41^{\circ}C.$ Thermodynamic parameters $({\Delta}G^o_m,\;{\Delta}H^o_m,\;{\Delta}S^o_m,\;and\;{\Delta}C_p)$ associated with micelle formation of CTAB have been also estimated from the temperature dependence of CMC and $\beta$ values, and the significance of these parameters and their relation to the theory of micelle formation have been considered. The results show that an enthalpy-entropy compensation effect is usually observed for the micellization of CTAB. The effects of n-alcohols on the micellar properties (CMC and $\beta$) of CTAB solutions have been also investigated. The addition of n-alcohol to the CTAB solution in a small quantity decreases the CMC value and the counterion binding constant $(\beta)$ at the CMC, but the addition of n-alcohol in an excessive quantity increases the CMC values on the conterary. These results have been explained in terms of the effect of the micelle-solubilized alcohol on the micellar surface charge density.

Keywords

References

  1. J. Colloid Interface Sci. v.127 McGreevy, R. J.;Schechter, R. S.
  2. Langmuir v.9 Muller, N.
  3. J. Phys. Chem. v.94 Mesa, C. La
  4. J. Chem. Soc. Faraday Trans. I v.71 Clint, J. H.;Walker, T.
  5. J. Colloid Sci. v.16 Flockhart, B. D.
  6. Langmuir v.6 Reekmans, S.;Luo, H.;Auweraer, M. V. der;Schryver, F. C. D.
  7. J. Colloid Interface Sci. v.91 Almgren, M.;Swarup, S.
  8. J. Colloid Interface Sci. v.80 Zana, R.;Yiv, S.;Strazielle, C.;Lianos, P.
  9. J. Colloid Interface Sci. v.93 Zana, R.;Picot, C.;Duplessix, R.
  10. J. Colloid Interface Sci. v.113 Rao, V.;Ruckenstein, E.
  11. J. Kor. Chem. Soc. v.37 Lee, B. H.
  12. Langmuir v.7 Lee, B. H.;Christian, S. D.;Tucker, E. E.;Scamehorn, J. F.
  13. J. Phys. Chem. v.96 Shanks, P. C.;Franses, E. I.
  14. J. Phys. Chem. v.93 Bacalogue, R.;Bunton, C. A.;Ortega, F.
  15. J. Colloid Interface Sci. v.115 Manabe, M.;Kawamura, H.;Yamashita, A.;Tokunaga, S.
  16. J. Phys. Chem. v.67 Schick, M. J.
  17. J. Colloid Interface Sci. v.77 Manabe, M.;Koda, M.
  18. Bull. Chem. Soc. Japan v.51 Singh, H.;Swarup, S.
  19. J. Colloid Interface Sci. v.98 Treiner, C.;Chattopadhyay, A. K.
  20. J. Colloid Interface Sci. v.129 Sharma, B.;Rakshit, A. K.
  21. Trans. Frarday Soc. v.60 Molyneux, P.;Rhodes, C. T.;Swarbrick, J.
  22. J. Kor. Chem. Soc. v.37 Chung, J. J.;Lee, S. W.;Choi, J. H.
  23. Langmuir v.9 Bertancini, C. R. A.;Neves, M. de F.;Nome, F.
  24. Bull. Chem. Soc. Japan v.50 Hayase, K.;Hayano, S.