Effect of Substituted Groups on the Retention of Monosubstituted Phenols in Reversed-Phase Liquid Chromatography

역상 액체 크로마토그래피에서 페놀 일치환체들의 머무름에 미치는 치환기들의 영향

  • 김훈주 (럭키 중앙연구소 분석센터) ;
  • 이인호 (대전대학교 이과대학 화학과) ;
  • 이대운 (연세대학교 화학과)
  • Published : 19940800

Abstract

The retention data of twenty one monosubstituted phenols in the eluent systems containing 30∼70% of methanol or acetonitrile as organic modifiers, on $ C_{18}$ and Phenyl columns were collected to investigate the effect of the substituted groups on the retention of phenols. The capacity factors of the solutes except amino phenols are greater on $ C_{18}$ than on Phenyl column. And all the solutes have shown greater capacity factors in methanol-water than that in acetonitrile-water as a mobile phase. Generally the elution order between meta and para isomers of monosubstituted phenols in consistent (p < m) regardless of the polarity of the substituted group. But the elution order between ortho and meta isomers of phenol varies with regard to the polarity of the substituted group. The retention of the monosubstituted phenols has been influenced by the interaction between the solute and unreacted silanol of columns as well as the interaction between the solute and $ C_{18}$ or phenyl group of columns. And then, the effect of unreacted silanol on the retention of the monosubstituted phenols is greater on $ C_{18}$ than on Phenyl column. And the greater hydrogen bonding acceptor basicity(${\beta}$) of the substituted group is, the greater this effect is. The relationship between the retention of the monosubstituted phenols and their parameters such as van der Waals volume(VWV) and hydrogen bonding acceptor basicity(${\beta}$) has been investigated. The good linearity has been observed in the plot log k' vs. (1.01VWV/100-1.84${\beta}$). In consequence, the retention of the monosubstituted phenols on $ C_{18}$ and Phenyl columns can be easily predicted by the parameter (1.01VWV/100-1.84${\beta}$).

Keywords

References

  1. J. Chromatogr. Sci. v.19 Realini, P. A.
  2. J. Chromatogr. v.128 Karger, B. L.;Gant, J. R.;Hartkopf, A.;Weiner, P. H.
  3. J. Chromatogr. v.352 Kaliszen, R.;Osmialowski, K.
  4. Anal. Chem. v.57 Sadec, P. C.;Carr, P. W.;Taft, R. W.;Kamlet, M. J.
  5. J. Korean Chem. Soc. v.31 no.1 Lee, D. W.;Choi, T. W.;Kim, H. J.;Jung, Y. S.
  6. J. Phys. Chem. v.69 Whetsel, K. B.;Lady, J. H.
  7. J. Phys. Chem. v.76 Hermann, R. B.
  8. J. Pharm. Sci. v.63 Amidon, G. L.;Yalkowsky, S. H.;Leung, S.
  9. J. Org. Chem. v.48 Kamlet, M. J.;Abbound, J. M.;Abraham, M. H.;Taft, R. W.
  10. J. Org. Chem. v.47 Traft, R. W.;Kamlet, M. J.
  11. J. Phys. Chem. v.68 Bondi, A.
  12. Anal. Chem. v.50 Schabron, J. F.;Hurtubise, R. J.;Silver, H. F.
  13. Anal. Chem. v.53 Organ, K.;Katz, E.
  14. J. Chromatogr. Sci. v.16 Tseng, P. K.;Rogers, L. R.
  15. J. Chromatogr. v.255 Colin, H.;Kratulovic, A.;Guiochon, G.
  16. J. Liquid Chromatogr. v.3 Berendsen, G. E.;Leo de Galan;Pikaart, K. A.
  17. J. Liquid Chromatogr. v.9 Ho, C. N.;Karlesky, D. L.;Kennedy, J. R.;Warner, I. M.
  18. J. Pharm. Sci. v.74 Traft, R. W.;Abraham, M. H.;Famini, G. R.;Doherty, R. W.
  19. J. Chromatogr. v.320 Thus, J. L. G.;Kraak, J. C.