Characterization of Layered Double Hydroxides(Mg-Al-$CO_3$ systems) and Rehydration Reaction of Their Calcined Products in Aqueous Chromate Solution

층상이중수산화물(Mg-Al-$CO_3$ 체계)의 물리 · 화학적 특성규명 및 소성된 시료의 크롬산이온 수용액에서 재수화반응

  • Rhee, Seog Woo (Department of Chemistry, Korea Advanced Institute of Science and Technology) ;
  • Kang, Mun-Ja (Department of Chemistry, Korea Advanced Institute of Science and Technology) ;
  • Moon, Hichung (Korea Atomic Energy Research Institute)
  • Published : 19950800


Layered double hydroxides ($Mg-Al-CO_3$ systems, LDH), which are hydrotalcite-like anionic clay minerals, having different $Mg^{2+}\;to\;Al^{3+}$ ratio were synthesized by coprecipitation method. The subsequent products were characterized by the following methods; elemental analysis, X-ray powder diffraction, thermal analysis (DSC and TGA), FT-IR and $^{27}$Al-MAS NMR. X-ray powder patterns showed that the products formed were layered structure materials. Two heat absorption peaks were observed around 20 ∼280$^{\circ}C$ (surface water and interlayer water) and 280∼500$^{\circ}C$ (water from lattice hydroxide and carbon dioxide from interlayer carbonate) in DSC diagrams, and they were quantitatively analyzed by TGA diagrams (in case LDH4 16.2% and 28.6% respectively). FT-IR spectra indicate that the interlayer carbonate ions occupied symmetrical sites between two adjacent layers in a parallel direction. $^{27}$Al-MAS NMR spectra show only single resonance (8.6 ppm) of the octahedrally coordinated aluminum similar magnesium. When LDH4 was calcined at 560$^{\circ}C$ for 3 hours in air, its layered structure was destroyed giving a mixed metal oxide. However it readily became rehydrated in aqueous chromate solution to its original structure.



  1. Chimia v.24 Allmann, R.
  2. Acta Crystallogr. v.24B Allmann, R.
  3. Miner. Mag. v.39 Taylor, H. F. W.
  4. Clays & Clay Miner v.23 Miyata, S.
  5. Am. J. Sci. v.251 Roy, D. M.;Roy, R.;Osborn, E. F.
  6. Miner. Mag. v.43 Mascolo, G.;Marino, O.
  7. Bull. Miner. v.103 Bish, D. L.
  8. Ind. Eng. Chem. Prod. Res. v.25 Sato, T.;Wakabayashi, T.;Shimada, M.
  9. Clay Miner v.26 Hansen, H. C. B.;Taylor, R. M.
  10. J. Inorg. Chem. v.26 Giannelis, E. P.;Nocera, D. G.;Pinnavaia, T. J.
  11. J. Am. Chem. Soc. v.110 Kwon, T.;Tsigdinos, G. A.;Pinnavaia, T.
  12. J. Colloid. Interf. Sci. v.123 Kopka, H.;Beneka, K.;Lagaly, G.
  13. (et al.) Japan Kokai v.07 Soma, I.
  14. Kagaku Gijutsushi MOL v.15 no.10 Miyata, S.
  15. Pharmazie v.43 Kokot, Z.
  16. Clays & Clay Miner v.31 Miyata, S.
  17. Kagaku v.42 Sato, T.;Shimada, M.
  18. Eur. Patent v.152 Miyata, S.
  19. React. Solids v.2 Sato, T.;Kato, K.;Endo, T.;Shimada, M.
  20. React. Solids v.3 Sato, T.;Tezuka, M.;Endo, T.;Shimada, M.
  21. Clays & Clay Miner v.28 Miyata, S.
  22. Solids State Ionics v.22 Reichel, W. T.
  23. Clay Miner. v.7 Brown, G.;Gastuche, M. C.
  24. JCPDS X-ray powder diffraction file (1986) No.22-700
  25. Basic Solid State Chemistry West, A. R.
  26. Chem. Lett. Fuda, K.;Kuda, N.;Kawai, S.;Matsunaga, T.
  27. Clays & Clay Miner v.30 Serna, C. J.;Rendon, J. L.;Iglesias, J. E.
  28. J. Colloid Interf. Sci. v.151 Fitzgerald, J. J.;Murali, C.;Nebo, C. O.;Fuerstenau, M. C.
  29. Am. Min. v.52 Ross, G. J.;Kodama, H.
  30. Am. Min. v.50 Munpton, F. A.;Jaffe, H. W.;Thompson, C. S.
  31. Appl. Catal. v.25 Hoppener, R. H.;Doesburg, E. B. M.;Scholten, J. J. F.
  32. J. Mater. Sci. v.28 Valcheva-Traykova, M. L.;Davidova, N. P.;Weiss, A. H.
  33. J. Mater. Chem. v.3 Mackenzie, K. J. D.;Meinhold, R. H.;Sherriff, B. L.;Xu, Z.
  34. Clay & Clay Miner. v.25 Miyata, S.;Okada, A.