Crystal Molecular Orbital Calculation of the Lanthanum Nickel Oxide by Means of the Micro-Soft Fortran

마이크로-소프트 포트란을 이용한 복합 산화물 결정의 분자 궤도함수 계산

  • Published : 19950900

Abstract

EHMACC and EHPC programs written in VAX version to calculate the tight-binding extended Huckel method is converted into the micro-soft fortran available to PC. The band calculation of LaNiO3 unit cell and extended ($2{\times}2{\times}1$) cell with perovskite structure is made by the PC/386 and PC/486. The calculation is also made for the DOS and the COOP. It is supposed that the electronic property of $LaNiO_3$ is semiconductor along to the ${\Gamma}{\rightarrow}H,\;H{\rightarrow}N,\;and\;N{\rightarrow}{\Gamma}(2D)$ direction with band gap about 0u.35 eV, while metal property in ${\Gamma}{\rightarrow}P\;and\;P{\rightarrow}N(3D)$ direction. The oxygen atom property in $LaNiO_3$ is more effectively affected by oxygen atom position than defect of nickel atom.

Keywords

References

  1. J. Chem. Soc. faraday 1 v.80 Roberts, M. W.;Smart, R. St C.
  2. Phys. Rev. v.B5 Mattheiss, L. F.
  3. Phys. Rev. v.B30 Terakura, K.;Oguchi, T.;Williams, A. R.;Kubler, J.
  4. QCPE Bull v.9 QCPE 571 Whangbo, M. H.;Evain, M.;Hughbank, T.;Kertesz, M.;Wijeyesekera, S.;Wilker, C.;Zheng, C.;Hoffmann, R.
  5. Bull. Kor. Chem. Soc. v.15 Lee, K. S.;Koo, H. J.;Park, Y. C.;Ahn, W. S.
  6. Bull. Kor. Chem. Soc. v.15 Lee, K. S;Koo, H. J.;Ahn, W. S.
  7. Bull. Kor. Chem. Soc. v.16 Lee, K. S;Koo, H. J.;Ham, K. H.;Ahn, W. S.
  8. Orbital Interaction in Chemistry Albright, T. A.;Burdett, J. K.;Whangbo, M. H.
  9. Modern Inorganic Chemistry(2ed.) Jolly, W. L.
  10. Phys. Rev. v.B46 Sreedhar, K.;Honing, J. M.;Darwin, M.;McElfresh, M.;Shand, P. M.;Xu, j.;Crooker, B> C.;Spalek, J.
  11. Chem. Mater v.5 Boorse, R. S.;Alemany, P.;Burlitch, J. M.;Hoffmann, R.
  12. Solid and Surface, A chemist's View of Bonding in Extended Structure Hoffamnn, R.
  13. LOTUS Release 2.1
  14. IBM OS/2 version 2.0
  15. Micro-soft Fortran v.19 Micro-soft Corporation
  16. Chem. Rev. v.91 Canadell, E.;Whangbo, M. H.
  17. J. Appl. Phys. v.36 Goodenough, T. B.;Raccah, P.
  18. J. Chem. Soc. Faraday Trans. 1 v.84 Tomellini, M.
  19. Inorg. Chem. v.26 Whangbo, M. H.;Evain, M.;Beno, M. A.;Williams, J. M.
  20. Phys. Rev. v.B6 Hufner, S.;Wertheim, G. K.
  21. Proc. R. Soc. Lond v.A366 Whangbo, M. H.;Hoffmann, R.;Woodward, R. B.
  22. J. Am. Chem. Soc. v.79 Wold, A.;Post, B.;Bank. E.
  23. Phys. Rev. v.B32 Mckay, J. M.;Henrich, V. E.
  24. J. Am. Chem. Soc. v.106 Saillard, J. Y.;Hoffmann, R.
  25. J. Am. Chem. Soc. v.100 Whangbo, M. H.;Hoffmann, R.
  26. Phys. Rev. Lett. v.34 Eastman, D. E.;Freeouf, J. L.
  27. Morden Phys. Lett. v.B4 Rao, G. R.
  28. J. Phys. Chem. v.96 Gonzalez-Elipe, A. R.;Holgado, J. P.;Alvarez, R.;Munuera, G. J.
  29. Phys. Rev. v.B5 Mattheiss, L. F.
  30. J. Phys. v.C14 Kunz, A. B.
  31. J. Solid State Chem. v.111 Sarma, D. D.;Chainani, A.