A New Analytical Method for the $Eu^{+3}$ and $Tb^{+3}$ Ions Using the Luminescence Enhancement by the Treatment of o-Phenanthroline on the Nylon Membrane

Nylon Membrane Filter에서의 발광증폭을 이용한 $Eu^{+3}$$Tb^{+3}$ 이온의 극미량 분석법

  • An, Seong-Hee (Department of Chemistry, Sookmyung Women's University) ;
  • Lee, Byung-Min (Korea Research Institute of Chemical Technology) ;
  • Park, Jong-Mok (Korea Research Institute of Chemical Technology) ;
  • Kim, Hai-Dong (esearch Institute for Basic Sciences and Department of Chemistry, Kyung-Hee University) ;
  • Jeong, Hyuk (Department of Chemistry, Sookmyung Women's University)
  • 안성희 (숙명여자대학교 이과대학 화학과) ;
  • 이병민 (한국화학연구소 공업화학연구부) ;
  • 박종목 (한국화학연구소 공업화학연구부) ;
  • 김해동 (경희대학교 기초과학연구소 문리과대학 화학과) ;
  • 정혁 (숙명여자대학교 이과대학 화학과)
  • Published : 19950900

Abstract

A new analytical luminescence method for the Eu+3 and Tb+3 ions was studied using the luminescence enhancement by the treatment of the o-phenanthroline on the nylon membrane. Compared to the specific emission intensities of the ions in aqueous(or ethanol) solution, if the aqueous ion is spotted on the nylon membrane, the luminescence intensities were extremely enhanced. There was additional enhancement effect of the luminescence intensities of the ions on the nylon membrane, if the ion on the nylon membrane is treated with o-phenanthroline. Based on the luminescence enhancement, the detection limits were lowered by more than 7 order of magnitude compared to that of solution sample, and also lowered by about 1 order of magnitude compared to that of previous TLC method. The dynamic ranges and correlation coefficients of the calibration curves near the detection limit were 2∼3 order and ∼0.99, respectively. It was also shown that the luminescence intensity was in its maximum when the ion on the nylon is treated with ∼4 mole ratio of o-phenanthroline. The energy-transfer mechanism was explained for the theoretical background of the luminescence enhancement.

Keywords

References

  1. Comprehensive of Inorganic Chemistry v.4 Moeller, T.;Bailar, J. C.(ed.);Emeleus, H. J.(ed.);Sir Nyholm, R.(ed.);Trotman-Dicken, A. F.(ed.)
  2. Pure Appl. Chem. v.60 Cossy, C.;Merbach, A. E.
  3. Anal. Chem. v.59 Mohite, B. S.;Kdhopkar, S. M.
  4. J. Radioanal. Chem. v.76 Wenji, W.;Bozhong, C.;Zhong-Kao, j.;Ailing, W.
  5. Anal. Chem. v.60 Nakagawa, K.;Okada, S.;Inoue, Y.;Tai, A.;Hakushi, T.
  6. Anal. Chem. v.62 Tran, C. D.;Zhang, W.
  7. Anal. Chem. v.43 Fisher, R. P.;Winefordner, J. D.
  8. Solid Surface Luminescence Analysis Hurtubise, R. J.;Guilbault, G. G.(ed.)
  9. Anal. Chem. v.64 Barbara, B.;Hurtubise, R. J.
  10. Anal. Chem. v.60 Alak, A. M.;Vo-Dinh, T.
  11. J. Chem. Phys. v.510 Kleinerman, M.
  12. Analyst v.108 Tsay, L. M.;Shih, J. S.;Wu, S. C.
  13. J. Chem. Phys v.10 Weissman, S. I.
  14. J. Chem. Phys. v.34 Crosby, G. A.;Whan, R. E.;Alirem, R. M.
  15. CRC Crit. Rev. Anal. Chem. v.18 Hoini, E.;Lovgren, T.
  16. J. Chem. Phys. v.42 Bhaumik, M. L.;El-Sayed, M. A.
  17. Anal. Chem. v.59 Manchanda, V. K.;Chang, C. A.
  18. J. Am. Chem. Soc. v.86 Melby, L. R.;Rose, N. J.;Abramson, E.;Caris, J. C.
  19. Spectrochim. Acta v.10 Crosby, G. A.;Kasha, M.
  20. Ann. Phys. (Leipzig) v.5 Bethe, H.
  21. J. Phys. Chem. v.66 Crosby, G. A.;Whan, R. E.;Freeman, J. J.
  22. Anal. Chem. v.58 Ensor, D. D.;McDonald, G. R.;Pippin, C. G.
  23. Spectroscopy in Inorganic Chemistry v.2 no.2 Sinha, A. P. B.;Rao, C. N. R.(ed.);Ferraro, J.(ed.)
  24. J. Kor. Chem. Soc. v.39 Jeong, H.;Lee, G. Y.;An, S. H.;Kim, H. D.;Lee, W.;Shin, D. H.
  25. Progress in Inorganic Chemistry v.31 Horrocks, W. D. Jr.;Albin, M.;Lippard, S. J.(ed.)
  26. Anal. Chim. Acta v.219 Norin, M.;Bador, R.;Dechaud, H.