Studies on Cultural and Morphological Characteristics of Isolate on Ganoderma species

Jae-Mo Sung, Cheon-Hwan Kim, Hee-Woo Moon, Soo-Ho Kim and Hyun-Kyung Lee

Department of Agricultural Biology, Kangweon National University, Chuncheon 200-701, Korea.

ABSTRACT: Eleven fruit bodies of Ganoderma sp. were collected from eight locations throughout the forest of Kangwon province and Kyunggi province in Korea. The hosts in forest were cut trunks of Quercus dentata, Q. variabilis, Prunus pteria and Alnus japonica that was newly surveyed but 5 isolates were collected at the farms of Ganoderma mushroom. Most fruit bodies were formed solitarily on the cut trunks but 5-106 isolate grown in crowds on cut trunk of Alnus japonica. Optimal temperature ranges for isolates of species studied were: G. applanatum 28°C~30°C, G. lucidum 28~30°C, G. neo-japonicum 28°C, and G. tsugae 26°C and all the species grew slowly at the 32°C. Hamada medium adjusted with pH 5.4 and 6.2 is better than other media for mycelial growth. Mycelial morphological characteristics of six species were studied: G. applanatum, G. lucidum and G. neo-japonicum produced typical type of staghorn hyphae but G. oregonens and G. valeosiacum produced staghorn hyphae with a branch of grape form. Clamp connection was observed on hyphae of G. applanatum, G. lucidum, G. oregonense and G. valeosiacum except G. neo-japonicum with node type. Chlamydospore was produced by G. applanatum, G. neo-japonicum. and cuticular cells were present on hyphae of G. lucidum, G. neo-japonicum, G. oregonense and G. tsugae.

라서 적지, 흑지, 황지, 청지, 자지, 백지와 같이 6종 으로 나누었고, 본초강목(AD 1590~1596)에서는 각각의 십속 영지 중 육지의 처방효용 등이 기재되어 있으며, 특히 영지채는 토목법도 기재되어 있다(Park 등, 1987).

최근에는 영지를 다루기 위해 뿐만 아니라 건강식품으로서의 관심이 증대되면서 약리학적 효과를 바탕으로 하는 기능성 음료의 개발과 함께 전세계적으로 화학성분 및 약효 등에 관한 연구가 활발히 이루어지고 있다. 또한 면역력의 증가, 항암효과, 항균작용, 혈압강하, 혈당강하효과, 혈전억제작용, X-선에 대한 방사능 증가 등 약리효과가 인정되면서 널리 알려지게 되었다. 이에 따른 수요량 증가를 충족시키기 위하여 인공제배법이 정착 확산되고 있는 추세이다(Park 등, 1986). 국내에서 제배되고 있는 영지는 대부분 Ganoderma lucidum으로 재배명목은 전체 버섯제배 면적의 1.7%에 해당하는 1,560농가에서 1,024M/T이 생산되고 있다(Park 등, 1986; Shin과 Seo, 1988). 국내에서 인공제배되고 있는 영지버섯은 자연생태계 내에서의 달리 자체체 모양이 녹각, 녹각과 녹각과의 중간형 등 다양하게 형성되지만 이에 대한 유전적인 분석과 현미경적 미세구조 및 생리적인 연구가 미흡한 현안이다. 대부분의 버섯분류는 형태학적 분류에만 의존하고 있는 실정이므로 보다 정확한 분류를 위해서는 형태학적 분류와 병원에 생리-생태학적인 방법과 생화학적인 분류법의 적용이 요구된다.

따라서 본 연구에서는 영지 속군(Ganoderma spp.)의 채집 및 수질과 함께 인공자체체를 형성하 여 자체체의 형태학적 특성을 조사하였다. 그리고 분리 및 배양학적 특성을 구명하고자 자세의 선발과 귀사생육 pH 및 온도범위 등을 조사하였으며, 귀밖에 귀사미세구조의 형태학적 특성을 조사하기 위하여 staghorn hyphae 와 후막포자, cuticular cell 및 clamp connection을 관찰한 미경과 주사경 자원미경을 통하여 관찰한 연구결과를 보고 하는 바이다.

재료 및 방법

Ganoderma 속균의 채집과 분리

강원도의 삼림지역인 강원대학교 연습원, 설악산, 오대산, 천아산 등과 경기도 연천군 자연을 대상으 로 1992년~1993년에 걸쳐 본 속균의 자체체가 형 성되는 8월 초순~10월 중순 사이에 귀자를 체집하였으며, 자체체의 채집장소, 채집일자, 자체체 발생 기주의 수종, 발생량 등은 약가에 기록하였으며, 체 집된 자체체는 실험실 내의 무균상에서 내부조직을 밀봉된 펌켓으로 냉어 내어 water agar에 이식하여 배양된 자체체를 관찰하였다. 자체체는 현미경에서 대형균주(PDA)에 이식하여 뿌리배양하였다. 따라서 본연구에서는 분리배양된 8군주와 농촌진흥청 농업과학기술원 용융미생물과에서 분양 받은 21군주를 본 실험의 공주시로 삼았다.

자체체와 귀산의 거주군조 관찰

공주시군을 불활성화 된 것 또는 창조무 토양배와 미양이 4:1의 비율(v/v)로 혼합하고 수분을 70%로 조절 후 고압살균한 토양배지에서 자체체를 형성시켰다. 인공배양된 자체체의 크기, 무게, 색깔, pore의 색갈을 악어로 관찰하였으며, 또한 인공배양된 자체체의 생물활성(biological efficiency)을 조사하였다(Diehle, 1986). 자체체의 조직과 포자의 크기는 현미경 하에서 관찰하였다. 그리고 귀산의 특성을 관찰하기 위하여 PDA배지(Difco Co.)상에서 25일간 배양된 귀산의 색깔을 조사하였으며, Methuen color chart와 색도에 따라 나타내었다(Methuen, 1983).

공주시군에 대한 귀주별 배양시험

공주시군을 강아진배지가 분양된 지난 8.5 cm petridish에서 15일 동안 배양하였으며, 배양된 귀산의 신장부분을 직경 6 mm의 cork borer로 취하여 배양시험의 전용물로 이용하였다. Table 1과 같이 배양조성이 다른 7종류의 배양지 상에서 공주시 귀산의 귀사생육이 우수한 배지선택시험을 수행하였으며, 온도시험에서는 우수배지로 선발된 YMA배지를 사용하여 20~34℃(2℃간격)에서 수행하였으며, pH시험은 YMA배지에서 0.1 N NaOH와 0.1 N HCl용액을 이용하여 pH 3.4~9.0(7차급구)에 되도록 조정하였다. 그리고 250 ml 삼각플라스크에 50ml씩 분주 후 면전을 하여 121℃(15psi)에서
Table 1. Compositions of synthentic media

<table>
<thead>
<tr>
<th>Medium ingredients(g/l)</th>
<th>GCM</th>
<th>HAM</th>
<th>MALText.</th>
<th>MCM</th>
<th>MMM</th>
<th>PDA</th>
<th>YMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casamino acid</td>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dextrose</td>
<td>30.0</td>
<td>20.0</td>
<td></td>
<td>20.0</td>
<td>20.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ehiose</td>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyponex</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K₂HPO₄</td>
<td>1.0</td>
<td>0.3</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KH₂PO₄</td>
<td>0.46</td>
<td>1.0</td>
<td>0.46</td>
<td>0.46</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malt ext.</td>
<td></td>
<td>25.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20.0</td>
</tr>
<tr>
<td>MgSO₄·7H₂O</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peptone</td>
<td>4.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td>Potatoes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sucrose</td>
<td>20.0</td>
<td>20.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yeast ext.</td>
<td>10.0</td>
<td>3.0</td>
<td>2.0</td>
<td>2.0</td>
<td>20.0</td>
<td>200.0</td>
<td>10.0</td>
</tr>
<tr>
<td>Agar</td>
<td>20.0</td>
<td>20.0</td>
<td>20.0</td>
<td>20.0</td>
<td>20.0</td>
<td>20.0</td>
<td>20.0</td>
</tr>
</tbody>
</table>

15분간 고압멸균하였다. 모든 실험은 공기균주를 접종하여 28±1℃의 항온기에서 10일간 배양한후 여과조로 진자체를 분리하여 진자와의 건조방을 조사하였다.

균주별 진자의 미세구조적 특성
공기균주 중에서 G. applanatum(AP-001), G. lucidum(GL-001), G. tsuage(TS-001), G. neo-japonicum(NJ-001), G. oogonese(OR-001), G. valesiacum(VL-001) 등을 petridish 바닥에 slide glass 2개씩 묶어 water agar로 얽고 증류하여 여과조로 분리배양한 다음 각각의 열처리를 가하여 100~1,000매로 판찰하였다. 진자세포의 형태(SEM)에 의한 판찰은 slide glass를 petridish 바닥에 묶고, 2% 젤아주정제(Malt extract)를 얽고 증류하여 만든 배지에서 18일 동안 배양하여 제조된 진자와 slide glass를 펼랫으로 들어머어 0.5 x 0.5 cm크기로 절취한 다음 4℃로 전처리된 2% glutaraldehyde용액에 처리하고 암상에서 1시간 간 동안 반응시키고 진자정 후 명균된 증류수로 3회 세척하였으며, 후고정을 위해 1% OsO₄가 들어있는 phosphate buffer(4℃)에서 60분간 반응시키고, 발수를 위하여 각각 40분씩 50%, 70%, 80%, 90%와 100%의 ethanol 시리즈를 거친 후 isoomylacetate로 40분간 2회 치환을 실시하고 임계점 진조장치로 진주과정을 거쳐 Ion coater(Jees, TEOl)로 gold coating을 하고 난 시료를 S-570 주사전자현미경(Hitachi社)을 이용하여 진자표면의 미세 구조적 특성을 2,000～25,000배에서 판찰하여 특정적인 부위를 사진 활용하였다.

결 과

Ganoderma 속균의 채집과 분리 및 수집
Ganoderma 속균의 자생체가 발생하는 시기에 7월 초순～8월 중순까지 강원도 홍천군 구절산(연 습림)을 비롯한 8개 지역 11개 장소에서 자생체를 채집하였다(Table 2). 자생체의 채집지는 참나무(Quercus sp.), 소나무(Pinus sp.), 아가시나무, 오리나무(Alnus sp.) 등으로 이루어진 혼합림으로 주로 남향 경사면에 있는 참나무와 오리나무(Alnus japonica)의 귀화를 여성도가 대부분이었다. GS-081은 설악산의 굴참나무(Quercus variabilis) 고사목 귀화를 여성에서 발생한 자생체로, 굴참나무 굴착지를 형성하고 있는 동방향의 경사면이었다. GS-083은 경기도 연천군의 삼림렇쳐 지역에서 채집된 것으로 맹가나무(Qu. denata)가 별도로 인해 고사한 귀화지였으며, 주위에는 참나무 등 활엽수의 낙엽이
Table 2. Collected isolates of *Ganoderma* species and their location, date, host and habitation

<table>
<thead>
<tr>
<th>Isolate</th>
<th>Species</th>
<th>Collection site</th>
<th>Host & Habitation</th>
<th>Date(M/D/Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GS-081</td>
<td>Ganoderma sp.</td>
<td>Mt. Sulak</td>
<td>Quercus dentata</td>
<td>10/02/92</td>
</tr>
<tr>
<td>GS-083</td>
<td>Ganoderma sp.</td>
<td>Younchun</td>
<td>Quercus dentata</td>
<td>09/14/93</td>
</tr>
<tr>
<td>GS-096</td>
<td>Ganoderma sp.</td>
<td>Weonju</td>
<td>Cultivar</td>
<td>08/23/92</td>
</tr>
<tr>
<td>GS-097</td>
<td>Ganoderma sp.</td>
<td>Hongchun</td>
<td>Cultivar</td>
<td>07/15/92</td>
</tr>
<tr>
<td>GS-098</td>
<td>Ganoderma sp.</td>
<td>Hongchun</td>
<td>Cultivar</td>
<td>08/20/92</td>
</tr>
<tr>
<td>GS-099</td>
<td>Ganoderma sp.</td>
<td>Ilsan</td>
<td>Cultivar</td>
<td>08/04/92</td>
</tr>
<tr>
<td>GS-100</td>
<td>Ganoderma sp.</td>
<td>KNU*</td>
<td>Prunus peria</td>
<td>07/25/92</td>
</tr>
<tr>
<td>GS-101</td>
<td>Ganoderma sp.</td>
<td>Weonju</td>
<td>Cultivar</td>
<td>08/23/93</td>
</tr>
<tr>
<td>GS-102</td>
<td>Ganoderma sp.</td>
<td>KNU</td>
<td>Quercus variabilis</td>
<td>08/04/93</td>
</tr>
<tr>
<td>GS-105</td>
<td>Ganoderma sp.</td>
<td>KNU</td>
<td>Quercus variabilis</td>
<td>10/20/93</td>
</tr>
<tr>
<td>GS-106</td>
<td>Ganoderma sp.</td>
<td>KNU</td>
<td>Alnus japonica</td>
<td>11/05/93</td>
</tr>
</tbody>
</table>

KNU: Kangwon National University Premises

상피 하층부는 부식된 유기물질이 풍부하였고, GS-096(볼로 3호)은 갈이 크고, 두꺼워, 니스질성의 광백이 나며, 영지상부의 수축효율이 높아 식음료제 조용으로 생산되는 재배중으로 강원도 홍천군 서산면의 재배농가에서 채집하였다. 그리고 GS-097와 GS-099(볼로 1호)은 경기도 일산군 지역의 영지재배농가에서 채집하였으며, 갈의 색깔과 모양이 밝은교모양이고 갈에는 동심원상의 줄무늬가 있으며, 주변부에는 연한색의 미를 가지고 있는 것으로서 전체적인 영지막의 형태를 이루고 있는 것으로 농가에서 한약재용으로 널리 채집되고 있다. 또한 GS-098(볼로 2호) 재배중으로 갈 모양은 GS-097과 유사하지만 전체적인 밝은교모양 또는 식상형으로 주변부 대부분은 노란색을 띠며, 갈이 작고 태김이 비교적 짧은 특징을 가지고 있는 것으로 강원도 홍천군 서산면 재배농가에서 채집하였다. GS-100은 강원대학교 캠퍼스 복숭아나무(*Prunus peria*) 그루터기에서 자활체를 채집하였으며, GS-102는 강원대학교 연수캠퍼스 동쪽 40년생의 갈나무가 인공조경된 곳에 약 20% 남향경사면으로 굽은 나무와 개암나무늘 청재하는 잔은의 고사한 굽은나무(*Q. variabilis*) 그루터기에서 자활체를 채집하였다.

GS-105와 GS-106은 강원대학교 캠퍼스 동쪽 40년생의 소나무와 참나무 및 오리나무, 아카시나무 등의 혼합림으로 GS-105는 고사한 굽은나무(*Q. variabilis*) 그루터기에서 채집되었고 약 15% 복서 경사면을 이루고 있었으며, 체질지 주위에는 참나무류 등의 활엽수와 갈나무의 낙엽이 10 cm 정도 쌓여 하층부가 밝혀 부식질로 변하고 있는 지역이었다. GS-106은 오리나무(*Alnus japonica*)의 범목으로 고사한 그루터기로 GS-105와 유사한 임상을 이루고 있는 지역의 남서 경사면으로 자활체는 8개가 한 그루터기에서 군생을 이루고 있었다(Photo 1).

자활체와 군사의 미세구조 관찰

영지숙균의 자활체는 갈이 형성되기 이전에 대가 먼저 자라게 되는데 이 때는 생장점 부위가 yellowish white (1A2) 또는 yellow(1A8)의 색깔을 띠게 되며 점차 성장해 나가면서 어떤 갈이 형성되기 시작하며, 이 말이 완료된 대에는 갈의 모양과 결정된 광택이 나고 점차 golden brown (5D7)부터 reddish brown (8D8) 까지의 색깔로 변화하게 된다.

갈의 모양은 영지숙균의 전체적인 모양이 밝은교도형을 이루는 경우와 부재형 또는 신장형과 부정형을 이루며, 갈의 모양에 따른 동심원상의 줄무늬가 있는 경우와 존재하지 않고 평활형인 경우가 있으며, 방사방이 줄무늬가 있는 경우도 있었다. 그 외에는 인공배양하여 자활체를 형성시킬 경우 대체 갈의 모양이 전형적인 형태와 같은 차이를 보이 는 것을 관찰할 수 있었다. 즉 이외포장의 비교적 양호한 재배조건에서 인공배양된 자활체의 형태는 갈과 대가 정상적으로 형성되었지만 불량한 환경조 건하에서 형성된 자활체는 갈의 형성이 전혀 이

 Ru어지지 않는 녹각형로 다수의 가지가 발생하는 것을 확인할 수 있었다(Photo 1).

 것으로 크기는 15.0~7.5×7.3~12.0 cm 정도이며, 표면의 색깔은 원전히 성숙한 자질색의 경우
Table 3. Color and size of fruit-bodies that cultivated on sawdust medium of *Ganoderma* spp.

<table>
<thead>
<tr>
<th>Isolates</th>
<th>Species</th>
<th>Color*</th>
<th>Size(cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GL-001</td>
<td>G. lucidum</td>
<td>Cap 7 C 8</td>
<td>15.0×8.5</td>
</tr>
<tr>
<td>GL-004</td>
<td>G. lucidum</td>
<td>Cap 5 C 6</td>
<td>10.5×8.5</td>
</tr>
<tr>
<td>GL-006</td>
<td>G. lucidum</td>
<td>Cap 5 B 6</td>
<td>12.5×6.5</td>
</tr>
<tr>
<td>GL-010</td>
<td>G. lucidum</td>
<td>Cap 5 C 7</td>
<td>11.0×6.5</td>
</tr>
<tr>
<td>GL-011</td>
<td>G. lucidum</td>
<td>Cap 5 B 6</td>
<td>14.5×12.0</td>
</tr>
<tr>
<td>GL-012</td>
<td>G. lucidum</td>
<td>Cap 4 A 6</td>
<td>14.0×9.0</td>
</tr>
<tr>
<td>GL-012</td>
<td>G. lucidum</td>
<td>Cap 5 C 6</td>
<td>14.5×8.0</td>
</tr>
<tr>
<td>GS-012</td>
<td>G. lucidum</td>
<td>Cap 5 C 7</td>
<td>15.0×7.3</td>
</tr>
<tr>
<td>GS-019</td>
<td>G. lucidum</td>
<td>Cap 5 B 7</td>
<td>15.5×8.0</td>
</tr>
<tr>
<td>GS-040</td>
<td>Ganoderma sp.</td>
<td>Cap 8 E 8</td>
<td>11.0×7.5</td>
</tr>
<tr>
<td>GS-051</td>
<td>G. lucidum</td>
<td>Cap 7 E 8</td>
<td>15.0×9.5</td>
</tr>
<tr>
<td>GS-054</td>
<td>G. lucidum</td>
<td>Cap 8 F 8</td>
<td>7.5×7.0</td>
</tr>
<tr>
<td>GS-068</td>
<td>G. lucidum</td>
<td>Cap 8 S E</td>
<td>13.0×8.5</td>
</tr>
<tr>
<td>GS-074</td>
<td>Ganoderma sp.</td>
<td>Cap 7 E 8</td>
<td>14.0×9.0</td>
</tr>
<tr>
<td>GS-075</td>
<td>Ganoderma sp.</td>
<td>Cap 4 A 5</td>
<td>14.0×7.5</td>
</tr>
<tr>
<td>GS-076</td>
<td>Ganoderma sp.</td>
<td>Cap 6 B 7</td>
<td>13.5×10.0</td>
</tr>
<tr>
<td>GS-079</td>
<td>Ganoderma sp.</td>
<td>Cap 8 E 7</td>
<td>13.0×8.0</td>
</tr>
<tr>
<td>GS-080</td>
<td>Ganoderma sp.</td>
<td>Cap 8 E 7</td>
<td>12.5×9.0</td>
</tr>
<tr>
<td>GS-081</td>
<td>Ganoderma sp.</td>
<td>Cap 5 D 7</td>
<td>14.5×8.5</td>
</tr>
<tr>
<td>GS-084</td>
<td>Ganoderma sp.</td>
<td>Cap 6 D 8</td>
<td>14.0×8.5</td>
</tr>
<tr>
<td>GS-096</td>
<td>Ganoderma sp.</td>
<td>Cap 4 A 6</td>
<td>13.5×7.0</td>
</tr>
<tr>
<td>GS-098</td>
<td>Ganoderma sp.</td>
<td>Cap 5 C 7</td>
<td>13.0×8.0</td>
</tr>
<tr>
<td>GS-099</td>
<td>Ganoderma sp.</td>
<td>Cap 5 C 7</td>
<td>13.0×8.5</td>
</tr>
<tr>
<td>GS-100</td>
<td>Ganoderma sp.</td>
<td>Cap 5 C 7</td>
<td>13.5×7.5</td>
</tr>
<tr>
<td>GS-105</td>
<td>Ganoderma sp.</td>
<td>Cap 8 E 8</td>
<td>16.5×10.5</td>
</tr>
<tr>
<td>OR-001</td>
<td>G. oregonense</td>
<td>Cap 9 E 8</td>
<td>13.0×12.0</td>
</tr>
</tbody>
</table>

Methuen Handbooks of Colour(A. Kornerup & J. H. Wanscher, 1983)

yellow(4A6)부터 reddish brown(9E8)까지를 띄게 되지만 미숙한 과의 중심부와 주변부의 색깔이 다르게 나타나며 완전히 성숙하게 되면 그의 표면 전체가 동일한 색깔로 변화하게 된다. 그러나 몰입대로 원목을 이용하여 자전체를 형성시킨 경우와 몰입배지에서 형성시킨 자전체의 색깔과는 다소 차이가 있었으며, 굴착란부의 원목을 이용한 경우가 몰입배지에 이용한 경우보다 색깔이 같은 것으로 조사되었다.

갖 뒷면의 자전층 색깔은 white(1A1)~yellow (3A6) 또는 yellowish white(3B2)를 이루고 있었으며 자전체가 완전히 성숙되어 완공 내부의 포자 가 모두 방출되면 white(1A1)으로 변화되는 것으로 나타났다. 그리고 대(stipe)와 갖(cap)의 붙는 각도는 수직을 이루는 경우와 수평을 이루는 경우 및 이들과의 중간형태를 이루는 경우가 있으며, 수직을 이루는 경우는 각과 대의 접착부위에 머리를 형성하는 경우가 있었고, 수평을 이루어거나 비슷하게 붙어 있는 경우는 머리를 형성하지 않는 경우가 대부분 이었다. 대의 길이는 2.0~7.5 cm 정도 였으며, 대의 길이와 자전체의 크기와는 무관한 것으로 나타났다(Table 3). 품질배지에서 형성시킨 자전체 무게를 Diehl(1986)의 방법에 따라서 수분함량을 제외한 배지의 품질 및 무게로 나눈 다음 십분율로 환산한 영지 속근의 생물환율은 1.9~5.9%로 나타났으며, 중에 따라서 차이를 나타낼 수 있었다(Table 4). 그리고 녹각형 자전체와 편각형 자전체의 형성 원인은 환경조건에 의하여 기인 될 수 있었으며, 일정한 환경조건에서 처리하였을 경우에도 근주에 따라서 녹각형 또는 편각
Table 4. Biological efficiency of fruit-bodies that cultivated on sawdust medium of *Ganoderma* sp.

<table>
<thead>
<tr>
<th>Isolates</th>
<th>Species</th>
<th>Dry weight of fruiting bodies (g)</th>
<th>Biological efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GL-001</td>
<td>G. lucidum</td>
<td>8.5</td>
<td>2.8</td>
</tr>
<tr>
<td>GL-002</td>
<td>G. lucidum</td>
<td>9.0</td>
<td>3.0</td>
</tr>
<tr>
<td>GL-003</td>
<td>G. lucidum</td>
<td>13.0</td>
<td>4.3</td>
</tr>
<tr>
<td>GL-008</td>
<td>G. lucidum</td>
<td>9.0</td>
<td>3.0</td>
</tr>
<tr>
<td>GL-009</td>
<td>G. lucidum</td>
<td>12.5</td>
<td>4.2</td>
</tr>
<tr>
<td>GL-010</td>
<td>G. lucidum</td>
<td>5.6</td>
<td>1.9</td>
</tr>
<tr>
<td>AP-001</td>
<td>G. applanatum</td>
<td>11.2</td>
<td>3.7</td>
</tr>
<tr>
<td>GS-081</td>
<td>Ganoderma sp.</td>
<td>9.0</td>
<td>3.0</td>
</tr>
<tr>
<td>GS-083</td>
<td>Ganoderma sp.</td>
<td>10.5</td>
<td>3.5</td>
</tr>
<tr>
<td>GS-096</td>
<td>Ganoderma sp.</td>
<td>15.8</td>
<td>5.2</td>
</tr>
<tr>
<td>GS-098</td>
<td>Ganoderma sp.</td>
<td>11.8</td>
<td>3.9</td>
</tr>
<tr>
<td>GS-099</td>
<td>Ganoderma sp.</td>
<td>9.0</td>
<td>3.0</td>
</tr>
<tr>
<td>GS-100</td>
<td>Ganoderma sp.</td>
<td>7.5</td>
<td>2.5</td>
</tr>
<tr>
<td>GS-102</td>
<td>Ganoderma sp.</td>
<td>8.4</td>
<td>2.8</td>
</tr>
<tr>
<td>GS-105</td>
<td>Ganoderma sp.</td>
<td>9.8</td>
<td>3.2</td>
</tr>
</tbody>
</table>

Sawdust medium 1,000 g/ Water content 0.7%=300 g (Dry weight of medium)

*Diehle’s(1986) Bioefficiency formula(%): Dry weight of fruitbody/Dry weight of medium × 100

Table 5. Color, mycelial density and growth rate of mycelial mat produced on 4% PDA media of *Ganoderma* sp.

<table>
<thead>
<tr>
<th>Isolate</th>
<th>Species</th>
<th>Color</th>
<th>Density*</th>
<th>Growth rate (mm/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GL-001</td>
<td>G. lucidum</td>
<td>White</td>
<td>++ +</td>
<td>5.1-5.5</td>
</tr>
<tr>
<td>GL-002</td>
<td>G. lucidum</td>
<td>White</td>
<td>++ +</td>
<td>5.0-6.0</td>
</tr>
<tr>
<td>GL-003</td>
<td>G. lucidum</td>
<td>White</td>
<td>++</td>
<td>4.8-5.5</td>
</tr>
<tr>
<td>GL-005</td>
<td>G. lucidum</td>
<td>White brown</td>
<td>+ +</td>
<td>3.5-4.5</td>
</tr>
<tr>
<td>GL-006</td>
<td>G. lucidum</td>
<td>White brown</td>
<td>++</td>
<td>4.0-4.8</td>
</tr>
<tr>
<td>GL-007</td>
<td>G. lucidum</td>
<td>White brown</td>
<td>++</td>
<td>3.5-4.8</td>
</tr>
<tr>
<td>GL-008</td>
<td>G. lucidum</td>
<td>White</td>
<td>++ +</td>
<td>5.5-6.0</td>
</tr>
<tr>
<td>GL-009</td>
<td>G. lucidum</td>
<td>White</td>
<td>++ +</td>
<td>5.0-6.5</td>
</tr>
<tr>
<td>AP-001</td>
<td>G. applanatum</td>
<td>Pale White</td>
<td>++ +</td>
<td>6.5-8.0</td>
</tr>
<tr>
<td>AP-002</td>
<td>G. applanatum</td>
<td>Pale White</td>
<td>++ +</td>
<td>6.0-7.5</td>
</tr>
<tr>
<td>AP-003</td>
<td>G. applanatum</td>
<td>White</td>
<td>++ +</td>
<td>5.5-8.0</td>
</tr>
<tr>
<td>NJ-001</td>
<td>G. Neo-japonicum</td>
<td>White</td>
<td>++</td>
<td>4.5-7.2</td>
</tr>
<tr>
<td>OR-001</td>
<td>G. oregonense</td>
<td>White</td>
<td>++ +</td>
<td>3.6-5.9</td>
</tr>
<tr>
<td>OR-002</td>
<td>G. oregonense</td>
<td>White yellow</td>
<td>+</td>
<td>3.5-6.5</td>
</tr>
<tr>
<td>TS-001</td>
<td>G. tsugae</td>
<td>White brown</td>
<td>+</td>
<td>5.5-6.8</td>
</tr>
<tr>
<td>TS-002</td>
<td>G. tsugae</td>
<td>White</td>
<td>+</td>
<td>4.3-5.6</td>
</tr>
<tr>
<td>VL-001</td>
<td>G. valesiacum</td>
<td>Dark brown</td>
<td>+</td>
<td>0.5-0.8</td>
</tr>
<tr>
<td>GS-083</td>
<td>Ganoderma sp.</td>
<td>White</td>
<td>++ +</td>
<td>4.0-6.3</td>
</tr>
<tr>
<td>GS-096</td>
<td>Ganoderma sp.</td>
<td>Pale white</td>
<td>++ +</td>
<td>2.3-4.5</td>
</tr>
<tr>
<td>GS-098</td>
<td>Ganoderma sp.</td>
<td>White</td>
<td>++ +</td>
<td>6.1-6.5</td>
</tr>
<tr>
<td>GS-099</td>
<td>Ganoderma sp.</td>
<td>White yellow</td>
<td>+</td>
<td>5.3-6.9</td>
</tr>
<tr>
<td>GS-100</td>
<td>Ganoderma sp.</td>
<td>White</td>
<td>+</td>
<td>4.7-6.5</td>
</tr>
<tr>
<td>GS-102</td>
<td>Ganoderma sp.</td>
<td>White brown</td>
<td>++ +</td>
<td>5.5-6.9</td>
</tr>
<tr>
<td>GS-105</td>
<td>Ganoderma sp.</td>
<td>White</td>
<td>++ +</td>
<td>6.0-7.2</td>
</tr>
<tr>
<td>GS-106</td>
<td>Ganoderma sp.</td>
<td>White</td>
<td>++ +</td>
<td>2.5-4.0</td>
</tr>
</tbody>
</table>

a +; thin, ++; thick, +++; very compact
Table 6. Basidiospore size of *Ganoderma* sp. that were cultured on Sawdust media

<table>
<thead>
<tr>
<th>Isolate</th>
<th>Species</th>
<th>Basidiospore size (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GL-001</td>
<td>G. lucidum</td>
<td>10.0-12.0×6.0-8.0</td>
</tr>
<tr>
<td>GL-002</td>
<td>G. lucidum</td>
<td>9.5-11.0×5.5-7.0</td>
</tr>
<tr>
<td>GL-003</td>
<td>G. lucidum</td>
<td>9.0-13.0×6.0-8.0</td>
</tr>
<tr>
<td>GL-008</td>
<td>G. lucidum</td>
<td>8.5-18.0×5.5-7.0</td>
</tr>
<tr>
<td>GL-009</td>
<td>G. lucidum</td>
<td>8.0-13.0×6.0-8.0</td>
</tr>
<tr>
<td>GL-010</td>
<td>G. lucidum</td>
<td>8.5-9.5×7.5-8.0</td>
</tr>
<tr>
<td>AP-001</td>
<td>G. applanatum</td>
<td>9.0-11.0×7.5-8.5</td>
</tr>
<tr>
<td>GS-083</td>
<td>Ganoderma sp.</td>
<td>7.5-8.0×6.0-7.0</td>
</tr>
<tr>
<td>GS-096</td>
<td>Ganoderma sp.</td>
<td>9.5-13.0×7.0-10.0</td>
</tr>
<tr>
<td>GS-098</td>
<td>Ganoderma sp.</td>
<td>8.5-10.0×5.5-7.0</td>
</tr>
<tr>
<td>GS-099</td>
<td>Ganoderma sp.</td>
<td>7.5-8.0×6.0-7.0</td>
</tr>
<tr>
<td>GS-100</td>
<td>Ganoderma sp.</td>
<td>9.0-10.0×6.0-9.0</td>
</tr>
<tr>
<td>GS-102</td>
<td>Ganoderma sp.</td>
<td>7.5-9.0×7.0-8.0</td>
</tr>
<tr>
<td>GS-105</td>
<td>Ganoderma sp.</td>
<td>8.0-11.0×7.0-9.0</td>
</tr>
<tr>
<td>GS-106</td>
<td>Ganoderma sp.</td>
<td>7.5-11.0×6.0-10.0</td>
</tr>
</tbody>
</table>

Fig. 1. Optimal medium selection of *Ganoderma lucidum* (GL-001) at seven media.

Fig. 2. Optimal temperature range of four species of *Ganoderma* in YM media.

형의 자실체가 형성되는 것을 관찰할 수 있었다. 자실체의 조직에서 대의 중앙부위는 심유질로 된 수직상을 조직을 이루고 있으며, 표면에는 수평상의 심유질층으로 되어 있고, 각에서는 상층부의 수평으로 된 심유질층과 하층부의 수직상의 자실체가 존재하는 것으로 나타났다. 한편 채집된 자실체로부터 순수분리한 군사와 수집된 균주를 PDA(Difco社)배지상에서 배양하였을 때 균사의 색깔은 pale white~dark yellow로 조사되었으며, 균사의 생성량은 2.5~8.0 mm/day로 군사에 따라 다소 차이가 있음을 알 수 있었다(Table 5). 그리고 PDA배지상에서 배양중인 균사에서 비자실체성 담자포자가기 형성됨을 확인할 수 있었다. 담자포자의 크기는 각 군주에 따라 서로 차이가 있음이 확인되었다 (Table 6)

분리 및 수집된 균주의 배양시험

배지 선택: 본 연구에 사용한 공시균주는 7종의 배지 모두에서 배양 2일째부터 약간의 군사생장이 시작되었으며 Hamada medium에서는 3일째 그리고 MCM, GCM, PDA에서는 4일째, YM 5일째부터 군사 생장량이 증가하기 시작하였으나 Hamada medium에서는 8일째 6.0 g, 10일째 9.3 g으로 가장 우수하였으나 MCM, PDA에서는 8일째 약 4.0 g, 10일째 약 8.0 g으로, GCM과 PDA의 경우 대수중식기(log phase)는 Hamada medium에서보다 늦게 시작되었지만 10일째에서의 전체 군사생장량이 유사함을 관찰할 수 있었다 (Fig 1).

균주별 배양온도 음도실험에 사용한 *Ganoderma lucidum, G. applanatum, G. neo-japonicum, G. tsugae* 등 4종의 균주는 공동적으로 28°C에서 군사생장이 우수하였다. *G. lucidum*은 28~30°C의 처리구에서 2.41~2.56 g으로 최고 군사생장률을 그리고 26~32°C가 최적 음도범위로 조사되었으며, 34°C 처리구에서는 0.1 g 정도로 거의 군사생장이 이루어지지 않았다. *G. applanatum*
의 경우 30℃에서 2.52g으로 최고 균사생장률 그 리고 26~32℃가 최적 온도범위로 조사되었으며, 34℃의 처리구에서도 0.94g으로 약간의 균사생장이 이루어지는 것으로 보아 본 실험에 사용한 다 른 종보다는 다소 고온성임을 알 수 있었다. G. neo-japonicum은 28℃ 처리구에서 2.5g으로 최 고 균사생장률을 나타내었으며, 28℃의 처리구 보다 높거나 낮은 온도에서는 비교적 균사생장이 적은 것으로 조사되었다. 그리고 G. tsugae는 26℃에서 2.48g으로 균사생장률이 가장 많았고, 최적 균사 생장 온도범위는 본 연구에 사용한 다른 종에 비하 여 24~28℃로 비교적 낮을 것으로 판찰할 수 있었다 (Fig 2).

균주별 적정 pH 조사 pH 실험에 사용한 5종의 공시균주에 대한 균사생장 적정 pH 범위는 본 실험 모두가 pH 4.5, 5.4, 6.2 처리구에서 균사생장이 높 은 것으로 조사되었으며, G. applanatum과 G. neo-japonicum 및 G. oregonense에서는 pH 4.5 및 pH 5.4 처리구에서 pH 6.2 및 7.3보다 균사생 장이 다소 높게 나타났다. 그러나 G. valesiacum의 경우 pH 4.5부터 8.0까지 비교적 균일한 균사생 장을 유지할 수 있었고, G. neo-japon-icum, G. oregonense에서는 pH 6.2, pH 7.3 처리 구에서 pH 4.5 및 pH 5.4 처리구보다 균사생장이 다소 높은 경향이 나타남을 관찰할 수 있었다(Fig 3).

군사의 형태적 특성 점사
군사의 주사전자현미경(SEM)에 의한 미세 구조 적 특성 주사전자현미경(SEM)에 의한 군사의 미 세구조적 특성의 관찰을 통하여 G. neo-japon- icum을 제외한 G. applanatum, G. lucidum, G. oregonense, G. tsugae G. valesiacum에서는 Clamp connection이 형성됨을 관찰할 수 있었으 며, G. applanatum, G. neo-japonicum에서는 후막포자(chlamydospore)가 형성됨을 관찰할 수 있 었다. 그리고 G. lucidum, G. neo-japonicum, G. oregonense, G. tsugae의 4 종에 대해서는 cu- ticular cell이 존재함을 확인할 수 있었으며(Photo 2), 본 실험에 사용한 6종의 Ganoderma속균 모두 에서 사슴뿔모양의 군사인 staghorn hyphae를 관 찰할 수 있었으나 모양과 크기가 종에 따라서 차이 가 있음을 확인할 수 있었다(Photo 3). 즉, G. applanatum에서는 격막이 존재하는 부위에서 형성되 며, 전형적인 사슴뿔모양의 군사로 되어 있고, 7~ 10개의 가지가 발생하며, 가지 끝에는 약간씩 부풀 어 있는 형태를 이루고 있었다. 그리고 줄기의 두께 는 7.6μm~38.8μm이고, 가지는 5.7~36.8μm임을 확인할 수 있었다. G. lucidum에서도 전형적인 사 슴뿔모양의 staghorn hyphae의 모양으로 이루어 져 있으며 4~6개의 가지가 발생하고, 줄기와 가지 의 기부와 끝부분의 두께가 0.5μm으로 무시할 모양 을 하고 있었다. G. tsugae의 경우 두가지 가지로 구분되는 사슴뿔모양의 staghorn hyphae가 존재 하고 있음이 확인되었다. 그러나 G. oregonense는 줄기와 가지의 구분이 흐려져있지 않고, 포도중이처럼 가지가 발생하고 있는 형태로 되어있으며, G. valesiacum는 가지가 무수히 많이 존재하는 staghorn hyphae의 모양이며, 군사의 전면에 고르 게 뻗어 존재하고 있음을 관찰할 수 있었다. 그리고 G. neo-japonicum에서는 가지와 줄기를 확인할 수 없을 정도로 송처럼 퍼져있으며, 군사의 전면에 서 고르게 관찰할 수 있었다(Table 7, 8).
고찰

강원도와 경기도 일원의 8개 지역으로부터 채집한 영지의 자립체는 주로 소나무, 아카시나무와 참나무 및 오리나무 등이 혼합림을 이루고 있는 지역이었으며, 신(1988) 등에 의한 보고에서 영지측근의 자립체 발생은 주로 참나무류에서 발생하고 밤나무, 참나무와 복숭아나무에서도 다수 발생한다고 보고하였으나 본 실험에서는 자연산 영지의 자립체가 오리나무의 발재한 그류이기에서도 균생을 이루

Cultivation of Ganoderma
이 가창 우수하였다.

영지버섯이 사람의 몸에 좋다고 알려진 현재 각 종 음식물에서부터 의약품에 이용되어 영지버섯의 재배방법이 증대되고 있으나, 영지버섯을 위한 기초 적인 연구가 미진한 편이나 본 연구를 통하여 배양 적 특성이 및 형태적 특성에 차이가 있음이 밝혀졌 다. 앞으로의 영지버섯 연구에 본 연구 결과가 기초 자료로 이용되리라 생각된다.

적 요

Ganoderma 숙군은 약효가 인정되어 많이 인공 재배되어 이용되고 있으나 본 숙군에 대한 기초적 인 연구가 미흡한 실정으로 본 연구에서는 영지 숙군을 체질하여 본리동정하였으며, 또한 배양적 특 성과 형태적 특성을 조사하였다. 영지숙군은 경기 도와 강원도 11개 장소의 창나무, 아카시나무, 오리 나무 등에서와 5회배농가에서 채집되었다. 대부분

<p>| Table 7. Summary of microscopical morphological characteristics of six Ganoderma species |</p>
<table>
<thead>
<tr>
<th>Species</th>
<th>Clamps</th>
<th>Chlamy-</th>
<th>Cuticular Staghorn</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>G. applanatum</td>
<td>+a</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>G. lucidum</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>G. neo-japonicum</td>
<td>-b</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>G. oregnense</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>G. tsugae</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>G. valesiacum</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>a: present, b: absent</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| Table 8. Morphological characteristics of staghorn hyphae within genus Ganoderma species |</p>
<table>
<thead>
<tr>
<th>Species (Isolate)</th>
<th>Staghorn Cluster</th>
<th>Branch cluster</th>
</tr>
</thead>
<tbody>
<tr>
<td>G. applanatum (AP-01)</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>G. lucidum (GL-01)</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>G. neo-japonicum (NJ-01)</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>G. oregnense (AP-01)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>G. tsugae (AP-01)</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>G. valesiacum (AP-01)</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>a: present, b: absent</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

어 발생될 확인할 수 있다. 체질하는 주로 남방 으로 경사면을 이루고 있었으나 KNU-GS-105의 경우는 북방을 이루고 있었다.

자연생태계 내에서 체질한 자식체는 농가에서 배르는 종은 약간의 차이가 있거나 유사하 였으며, 오리나무에서 체질한 GS-106의 경우 자식 체의 외부형태적 특성이 및 배양적인 특성이 있어서 농가 포장에서 체질한 GS-096과 유사한 특성을 가 지고 있었다.

배양적 특성이 관련 연구로는 Bose(1929) 등은 *G. lucidum*에 대한 군사배양 적정온도를 30~35°C라고 하였으나 본 실험에서는 26~28°C로 다소 차이가 있었으며 중에 따라서 차이가 있었다. 그리고 Stenupta(1943) 등은 영지숙군의 최적 배지 로서 pH 6.82의 벡이추배지라고 하였으나 본 실험에서는 Hamada배지에서 더 우수한 군사성장을 확인할 수 있으면 중에도 따라서 약간의 차이를 나타 남을 확인하였다. *Ganoderma*속 군주의 적정 pH 범위는 pH 5.4와 pH 6.2의 처리구에서 군사생장량이 가장 우수하였다.
Cultivation of Ganoderma

Hirotani, C. Ino, T. Furuya and M. Shiro.