수식 어류껍질 젤리산 유화물에 의한 적색육어류 연령제의 품질개선

김 진 수
경상대학교 수산가공학과

초록: 어류껍질 및 적색육어류의 효용적 이용을 위한 일련의 연구에서 succinylation 처리한 봉장어껍질 젤리산으로부터 유효성이 및 유효성청가능이 있는 유화물을 제조조건을 살펴보았고, 아울러 유화물의 참가에 의한 적색육어류 연령제의 품질개선을 시도하였다. 유화물의 양성은 20% 수식 젤리산용량을 에비고문(5,000 rpm, 15분)하고 이어서 교반(15,000 rpm, 5분)하는 동안 젤리산에 대하여 15분의 대두유를 서서히 참가하는 것이 가장 좋았고, 이 때 정지, 진동 및 친감장에 의한 양성은 각각 95%, 90% 및 95%이었다. 수식 봉장어껍질 젤리산을 유효성로한 유화물의 수분, 단백질, 지방 및 총성분량은 각각 18%, 5%, 76% 및 0.5%이었고 관능적 색조는 백색을 나타내 있으며, 저산산수강 및 저탄산소군은 대두유와 유사하였다. 고등어 고기물에 대하여 6%에 해당하는 유화물의 참가에 의해 제조된 적색육어류 연령제는 유효물 부재가 제품에 비하여 파산산물감, 간편도 등 같은 유지력가 차이가 없었으며, 색조, 케첩감도 및 관능적 조익감은 개선되었으며, 화학성장기질소, 수분수 및 희미함량 등은 상당히 낮았다.(1996년 4월 22일 접수, 1996년 7월 25일 수리)

서 론

근년 수산연예제품의 생산량은 해마다 급속한 증가세를 보이고 있으나 맛있고 같은 원료의 확보가 어려워 대체 어종의 개발이 시급하다. 그러나 우리나라는 연안에서 아직 수고하고 있는 어종은 연간 20만톤 정도의 얕은수로 공급되며 우수한 식단 및 아미노산이 풍부하게 함유되어 있고, 고도분화요소분의 함유량이 높아 영양적으로 우수하다. 다양한 고도분화요소로 구성되어 있어 지성진화가 빠르며, 케첩형성이 높아 식용용으로 사용하기에 좋은 노력을 보이지 않고 극히 일부 만이 통조림용 등과 같은 식품용으로 사용되고 나머지 대부분이 사료로 이용되고 있어 상당히 비효율적으로 이용되고 있다. 뿐만 아니라 국내 수산가공품 공장에서는 수산식품가공 중 주성분이 젤리산인 어류껍질이 연간 약 5만톤정도로 부산되고 있으나 amino acid의 함량이 적어 콜라겐이나 젤리산으로 이용되지 못하고 대부분이 폐기되고 있다. 따라서 어류껍질제품은 수산연예제품의 품질개선재료로 고기물의 적색육어류 연령제를 조성하려면 수산연예제품의 품질개선재료 개발과 효용적 이용의 잠재력을 개발하고 심사를 위한 비용은 젤리산처리한 봉장어껍질 젤리산으로부터 유효성 및 유효성청가능이 있는 유화물의 제조조건을 살펴보았고, 아울러 유화물의 참가에 의한 적색육어류 연령제의 품질개선을 시도하였다.

재료 및 방법

유화물 및 수산연예제품의 제조
적색육어류로 제조한 연령제품의 지질산화 억제 및 탄력개선을 목적으로 참가하는 유지물은 전조와 같은 방법으로 제조한 젤리산을 억제에 용해한 다음 교반(5,000 rpm, 15분)하고 이어서 일정량의 대두유(등방유량 60%)를 참가하면서 균질화(15,000 rpm, 5분)하여 제조하였다. 즉 참가유량의 변화에 따른 유지물의 양성율을 측정하기 위한 유지물은 20% 젤리산용량에 참가유량을 5~20% 가하여 유효성 체제하고, 참가유량의 변화에 따른 유지물의 양성율을 측정하기 위한 유지물은 젤리산에 대하여 4~9배의 물을 가하여 용해한 젤리산에 유지율 15배 가하여 유효성 체제하였다.

수산연예제품의 제조는 체육한 고기물에 물(3배), 중량 산다유(0.4%) 및 염식유(0.3%)을 가하여 수질을 원심분리한 후 추출시켜 마시고, 마쇄한 고기물에 대하여 섭정(4%), 술비트(4%), 증합인산염(0.2%), 글루타민산다유(0.2%), 섭정(2%), 뇌다มาตรฐาน(3%) 및 양파가루(3%)를 참가하여 고기의 기름을 제거하고, 고기물의 중합을 방지하고는 다음, 자연응고(40C, 30분) 시키고, 가열(90C, 40분), 냉각 및 제거(90C, 10초)하여 제조하였다. 이와같은 참가율의 배합비율로 제조한 연예제품을 대조제품으로 하였고, 유효성 체제제품은 조직감 및 품미개선을 위하여 대조제품에 관한 참가율에 의해 유효성 체제제품을 사용한 유화물(6%)을 가하여 제조하였다.

일반성분 및 색조의 측정

참조: fish skin, modified gelatin, fish with red muscle, emulsion curd, surimi gel
일반소분은 상엽에 따라 수분은 상업가열건조법, 조영방
은 Soxhlet법, 조영백질은 semiinicro Kjeldahl법, 화분은 건
식회화법으로 측정하였고, 설탕은 적시색차계(日本電色:
model ND-101DP)로 측정하였다.

pH, 휘발성염기기질소, 생균수 및 헬스탄화합물의 측정
pH는 시료에 약 10배량의 순수를 가한 후 균질화시켜
pH meter(Fisher model 630)으로 측정하였고, 휘발성염기기질
소는 Conway unit을 사용하는 미량화산반으로 측정하였으
다. 생균수는 APHA의 방법에 따라 식수화석법으로 회석
하고, 표준화한정관검점을 사용하여 배양(20℃, 48시간)한
집락수를 계산하였고, 헬스탄은 소듐의 방법에 따라 진
처리한 다음 흡광도(510nm)를 측정하여 검정조선으로부
터 정량하였다.

결번도, 과산화물감 및 지방산조성의 측정
결번도는 Hirano 등의 방법에 따라 시료에 2배량의
66% 에탄올을 가하고 균질화시켜 추출액을 여과한 후 분광
광도계(Shimadzu UV-1400-02)로 측정하였다. Bligh와
Dyer의 방법에 따라 추출한 지질을 시료로 하여 과산
화물감은 AOAC법에 따라 측정하였고, 지방산조성은
시료용은 Metcalfe와 Schmit의 방법에 따라 비누화 및 매질
화시켜 지방산 메탈 에스테르를 조제한 후 GLC
(Shimadzu GC-7AG)로 분석하였다. 이 때 지방산의 분석
조건 및 동정법은 이등과 같다.

유화물의 안정성 측정
유화물의 경제에 의한 안정성은 신보 등의 방법에 따라
유화물을 원심관(내경: 0.8 cm, 길이: 10 cm)에 충전하여
상온 경치(24시간) 시킨 후 원심분리(990 x g, 20분)하여 전
체 농이에 대한 유화물 농이의 상대비율(%)로 계산하고, 내부
유화안정성은 Elizalde 등의 방법에 따라 유화물에 시험관
에 넣고, 이를 향온조(45℃)에 방치(24시간)한 다음 중간층
의 수분을 측정하여 유화물 제조조직의 수분함량에 대하여
경제 후의 유화물의 수분함량과 유화물 제조조직의 수분함
량의 차이에 대한 상대비율(%)로 하였다. 유화물의 진동 및
저장에 의한 안정성은 소프트고리의 방법에 따라 측정하
였다. 즉 진동에 의한 안정성은 유화물을 원심관(내경: 0.8
cm, 길이: 10 cm)에 충전한 다음 향온조(30℃)에서 진동
(진폭: 4 cm, 회수: 150 cpn, 시간: 1시간)시킨 다음 원심
분리(990 x g, 20분)하여 전체 농이에 대한 유화물 농이의
상대비율(%)로 하였다. 저장에 의한 안정성은 유화물의 원
심관(내경: 0.8 cm, 길이: 10 cm)에 충전하여 냉장고(5℃)
에 방치(24시간)한 후 원심분리(990 x g, 20분)하여 전체 농
이에 대한 유화물 농이의 상대비율(%)으로 하였다.

젤리강도 및 관능감상의 측정
젤리강도는 시료를 일정한 크기(지정 4.5 cm, 높이 2.5
cm)로 절단한 다음 Sun rheometer(CR-17)로 가압(1 kg)
하여 측정하였고, plunger는 지정 5 mm의 구형이었으며,
수식 2. 셀러던 유화물에 의한 저화유유아 연쇄물의 품질개선

Fig. 2. Effect of soybean oil addition on total stability of emulsion curd contained succinylated gelatin from conger eel skin as an emulsifier after chilled storage(5°C, 24 hrs: []-[])) and vibration(30°C, 3 hrs: - - -).

Fig. 3. Effect of water addition on total stability(□-□) and inner stability(■-■) of emulsion curd contained succinylated gelatin from conger eel skin as an emulsifier, standing at room temperature for 24 hrs and at 45°C for 24 hrs, respectively.

Fig. 4. Effect of water addition on total stability of emulsion curd contained succinylated gelatin from conger eel skin as an emulsifier after chilled storage(5°C, 24 hrs: []-[])) and vibration(30°C, 3 hrs: - - -).

하루 유화물의 일부가 파괴되어 유화 분산되어 있는 유지 암자가 서로 접촉할 기회가 증대하기 때문이라 생각되었다. 지온저장에 의한 총 유화안정성은 가수가량의 증가에 따라 증가하여 가수가량 15배에서 95%로 최고이었고, 그 이상의 집가유량에서는 오히려 감소되었다. 야가같이 점자에 의한 총 유화안정성이 지온저장에 의한 유화안정성이 높은 것은 철린에의 경우 일반적으로 볼수록 이상의 온도에서의 온도가 낮을수록 점자도 높아지며 물과 유지의 분리가 콘라인으로 하여 이에 따라 감소되었다. 한편 철린은 유화물의 점자도 낮거나 분산된 지방구의 잎기로 크면 유화상태가 파괴되어 물 및 유가가 용이하게 분리되었고 보고한 바 있다.

철린에 대하여 가수가량 4~9배로 한 다음 15배에 해당하는 대두유를 서서히 가라앉히며 제조한 유화물의 정차에 의한 총 유화안정성 및 대두유 유화안정성의 결과는 Fig. 3과 같다. 점자 및 지온저장에 의한 총 유화안정성의 결과는 Fig. 4와 같다. 가수가량을 달리한 유화물의 정차에 의한 총 유화안정성은 철린에 대하여 4~5배의 물을 가하여 제조한 유화물이 95%에서 큰 차이가 없었으나, 가수가량을 5배 이상으로 한 유화물은 가수가량 증가함수록 감소하였다. 이와같은 결과는 유화물은 유화할 수 있을 정도의 자유수를 필요로 하여, 유지를 점자할 시점수에 따라 많은 양의 자유수가 존재하면 유화상태가 분리되어 기저의 유화물 그대로인 유화물은 5배로 하였다. 20% 철린유용액은 5,000 rpm에서 1분간 압력간한 다음 15,000 rpm으로 5분간 교반한 동안 철린에 대하여 15배의 대두유를 서서히 점자하여 제조한 유화물의 유화특성을 비교한 결과는 Table 1과 같다. 두수식 철린의 유화안정성은 정차에 의한 경우 74.8%이었고, 점자에 의한 경우는 두드러지게 점자하여 44.6%이었으나 저온저장에 의한 총 유화안정성은 철린의 점자증가에 의해 상승되어 80.6%이었으나. 수식 철린의 정차 및 저온저장에 의한 총 유화안정성은 모두 95%이었고, 점자에 의한 총 유화안정성은 이보다 약간 낮은 90%이었다.
유화물의 일반적 특성 및 유지특가
결론, 물론 및 대두유의 배합비율을 1:5:15로 하여 제조한 유화물의 일반성분 및 색조는 Table 2, 과산화물감 및 지방산조성은 Table 3에 같다. 유화제인 젤라틴의 종류에 따른 유화물의 일반성분, 색조 및 유지특가에 있어서는 거의 차이가 없었다. 두 종류의 젤라틴으로 제조한 유화물이 모두 배합된 지점에는 의해 지점확률이 75%정도로 대부분을 차지하였고, 다음으로 수분이 19%정도, 유화제로 사용한 젤라틴에 의해 단백질은 5%정도 이었고, 혈분은 1.0%미만이었다. 현터 색조의 경우 명도는 93정도급, 적색도는 -3.0 정도급, 황색도는 9.0정도급, 색차는 7.0정도급 나타내어 판능적으로 보는 전체적인 색조는 백색이었다. 과산화물감은 대두유가 7.8 meq/kg이었고, 유화물이 8.0~8.5 meq/kg가여서 거의 차이가 없었으며 또한 대두유 및 이로 제조한 유화물은 모두 주요 지방산이 18:2(52%정도), 18:1(23%정도), 16:0(10%정도) 및 18:3(8%정도)였고, 이들은 전체 지방산조성이 약 93%정도를 차지하여 대두유와 유화물 간에 지방산조성의 차이가 없었다.

유화물의 첨가량에 따른 적색색여무 연조합의 특성 변화
유화물의 참가량에 따른 적색색여무 연조합의 일반성분, 유지특가, 색조 및 판능평가의 변화는 Table 4와 같다. 유화물의 참가량이 증가함수록 적색색여무 연조합의 조합이 증가하였으며, 이는 젤라틴, 물 및 대두유의 배합비가 1:5:15로 구성되어 있는 유화물의 참가에 의한 영향이라 생각되었다. 적색색여무 연조합의 과산화물감 및 갭변도는 유화물의 참가량에 관계없이 각각 7.6~9.5 meq/kg 범위 및 0.312~0.327 범위로 거의 차이가 없었으나, 현터 색조는 유화물의 참가량이 증가함수록 명도 및 황색도의 경우 증가

Table 1. Total stability of emulsion curds contained succinylated gelatin from conger eel skin as an emulsifier as affected by standing (room temperature, 24 hrs), vibration(30C, 8 hrs) and chilled storage (5°C, 24 hrs).

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Unmodified gelatin</th>
<th>Succinylated gelatin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standing</td>
<td>74.8%</td>
<td>95.0%</td>
</tr>
<tr>
<td>Vibration</td>
<td>44.6%</td>
<td>90.0%</td>
</tr>
<tr>
<td>Chilled storage</td>
<td>80.6%</td>
<td>95.0%</td>
</tr>
</tbody>
</table>

Table 2. Proximate composition and Hunter values of emulsion curds contained succinylated gelatin from conger eel skin as an emulsifier.

<table>
<thead>
<tr>
<th>Emulsifier</th>
<th>Unmodified gelatin</th>
<th>Succinylated gelatin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture (%)</td>
<td>19.8</td>
<td>18.0</td>
</tr>
<tr>
<td>Protein (%)</td>
<td>5.8</td>
<td>5.1</td>
</tr>
<tr>
<td>Lipid (%)</td>
<td>74.0</td>
<td>76.2</td>
</tr>
<tr>
<td>Ash (%)</td>
<td>0.2</td>
<td>0.5</td>
</tr>
<tr>
<td>L</td>
<td>92.8</td>
<td>92.7</td>
</tr>
<tr>
<td>Hunter a value</td>
<td>-3.1</td>
<td>-2.7</td>
</tr>
<tr>
<td>b</td>
<td>8.8</td>
<td>8.6</td>
</tr>
<tr>
<td>△E</td>
<td>7.1</td>
<td>6.7</td>
</tr>
</tbody>
</table>

Table 3. Peroxide value and fatty acid composition of emulsion curds contained succinylated gelatin from conger eel skin as an emulsifier.

<table>
<thead>
<tr>
<th>Soybean oil</th>
<th>Unmodified gelatin</th>
<th>Succinylated gelatin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peroxide value (meq/kg)</td>
<td>12.0</td>
<td>trace</td>
</tr>
<tr>
<td></td>
<td>14.0</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>15.0</td>
<td>trace</td>
</tr>
<tr>
<td></td>
<td>16.0</td>
<td>10.3</td>
</tr>
<tr>
<td></td>
<td>17.0</td>
<td>trace</td>
</tr>
<tr>
<td></td>
<td>18.0</td>
<td>4.6</td>
</tr>
<tr>
<td></td>
<td>20.0</td>
<td>0.3</td>
</tr>
<tr>
<td>Saturates</td>
<td>15.3</td>
<td>15.8</td>
</tr>
<tr>
<td>16:1</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>18:1</td>
<td>23.3</td>
<td>23.5</td>
</tr>
<tr>
<td>18:2</td>
<td>4.0</td>
<td>0.6</td>
</tr>
<tr>
<td>18:3</td>
<td>23.9</td>
<td>24.4</td>
</tr>
<tr>
<td>20:1</td>
<td>52.7</td>
<td>51.3</td>
</tr>
<tr>
<td>20:4</td>
<td>7.8</td>
<td>8.0</td>
</tr>
<tr>
<td>20:5</td>
<td>0.3</td>
<td>0.5</td>
</tr>
<tr>
<td>Polynens</td>
<td>60.8</td>
<td>59.8</td>
</tr>
</tbody>
</table>

Table 4. Proximate composition, peroxide value(POV), brown pigment formation, Hunter values and sensory evaluation of mackerel surimi gel as affected by the added amount of emulsion curd.

<table>
<thead>
<tr>
<th>Emulsifier</th>
<th>Moisture (%)</th>
<th>Crude lipid (%)</th>
<th>POV (meq/kg)</th>
<th>Brown pigment (OD at 430 nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>73.8</td>
<td>72.9</td>
<td>71.8</td>
<td>71.1</td>
</tr>
<tr>
<td>Moisture (%)</td>
<td>2.4</td>
<td>3.7</td>
<td>5.3</td>
<td>6.8</td>
</tr>
<tr>
<td>Crude lipid (%)</td>
<td>8.6</td>
<td>7.6</td>
<td>8.3</td>
<td>7.8</td>
</tr>
<tr>
<td>POV (meq/kg)</td>
<td>0.312</td>
<td>0.318</td>
<td>0.327</td>
<td>0.315</td>
</tr>
</tbody>
</table>

*Five scales: 5=very good, 3=acceptable, 1=very poor The same letters indicate insignificant difference at the 5% level using Duncan's multiple range test.
장 중였고, 그 이상의 점자량에서는 오히려 저하하였다. 유화물의 점자량에 따른 적색육어류 연제품의 점자량도 변화는 Fig. 5와 같다. 적색육어류 연제품의 점자량도는 유화물 무게가 제도 671 g·cm⁻²이었으나, 유화물의 점자량이 증가함수록 증가하여 6%로 점자량 경우 809 g·cm⁻²에 달하였고, 그 이상의 점자량에서는 오히려 감소하였다. 현자, 분석 결과는 점자량에 대한 적색육어류 연제품을 유화물로 하여 5% 이하의 점자량이 유함된 유화물을 가하여 흡수를 제조한 경우 점자량도 상당히 감소되었으나, 5% 이상의 점자량을 가하여 흡수를 제조한 경우는 오히려 햇반의 밀도가 상당히 저하되었으며, 이는 유화량이 강한 lecithin의 점자에서 더 큰 효과가 없었기 때문이라고 보고한 바 있다. 이러한 일반으로 볼 때 적혈구성 적색육어류 연제품을 제조한 경우 광점성의 유화물을 점자하여 단백질과 상호작용에 의하여 점자량을 개선할 수 있으나 과도한 유화물의 점자나 유화력이 약한 유화물의 점자는 열처리 등의 가공과정에서 일부의 점자량이 유함되어 단백질이 오히려 저하된다고 판단된다. 본 실험에서도 고유량에 대하여 유화물의 점자량이 5% 이하의 범위에서는 점자량이 증가함수록 점자량의 유화 작용에 의하여 점자량과 단백질의 친화성 증가에 의해 단백질이 재생되어 있으나 그 이상의 점자량에서는 유화물로부터 점자량에 의하여 단백질이 오히려 감소하였다. 이상의 유화물의 점자량에 따른 적색육어류 연제품의 품질특성으로 미루어 볼 때 유화물의 최적 점자량은 6%로 판단된다.

유화물점자 적색육어류 연제품의 품질특성
유화제로 succinylation 처리한 점자량을 사용한 유화물은 6% 점자하여 제조한 적색육어류 연제품의 품질특성은 Table 5와 같다. 원료 고유량의 일반성분은 수분함량 67.1%, 조지방 함량 9.3%, 조단백질 함량 21.7% 및 조회분 함량 1.3%이었다. 원료 고유량에 비하여 유화물 점자 유무에 관계없이 적색육어류 연제품은 가공중 수축성장에 의한 영양으로 수분함량의 경우 증가하였고, 조지방 함량의 경우도 낮아져 유화물 무게가 제도가 약 7%가 감소하였고, 유화물 점자 제도 약 2%가 감소하였다. 세포질 간에는 유화물을 점자한 제품(G) 및 S가 유화물 무게가 제품(C)에 비하여 조지방 함량의 경우 높았고, 상대적으로 수분의 경우 낮았다. 한편 유화제로 점자하여 점자량의 점자율에 따른 일반성분의 차이가 없었다. 원료의 pH가 6.12이다 반하여 제조품의 pH는 7.50으로 상당히 증가하였는데, 이는 pH저항점을 위하여 중탄수소화물을 처리하기 때문이었다. 제조품 간의 pH 및 생규수는 유화물의 점자에 관계없이 제조품 모두 7.50 및 4.0×10⁻⁵/g 무게로 거의 차이가 없었으며, 회복성염기결합 및 히스타민함장의 경우에 유화물 점자 제도(G) 및 S가 유화물 무게가 제품(C)에 비하여 약간 적다. 이와 같은 결과는 유화물의 점자에 적색육어류 연제품의 성분이 회복성염기결합 및 히스타민함장이 아니면 관계가 없는 점자성분이 증가하였기 때문으로 판단하였다. 유화물점자에 관계없이 제조품의 적색육어류 연제품의 pH, 회복성염기결합, 생규수 및 히스타민함장은 상당히 낮아, 이들 결과만으로 판단하여 볼 때 식품의 치료적으로 대부분의 경우에 해결되지 않으리라 판단하였다. 적색육어류 연제품의 회복성염기결합 및 간변도는 유화물의 점자에 관계없이 7.8~9.0 밀그램/한간 0.321~0.320으로 거의 차이가 없었다. 현자 색조는 유화물 점자 제품이 유화물 무게가 제품에 비하여 마요네즈의 색조와 유사한 흉색을 나타낸 유화물의 영향으로 인해도 흉색도의 경우 증가하였고, 적색도 및 색차의 경우 감소하였다. 이와 같은 합성은 succinylation 처리한 점자량으로 제조한 유화물을 점자 제품이 무색질 점자량으로 제조한 유화물 점자제품보다 현저하였다. 점자량은 유화물 무게가 제품이 671 g·cm⁻²이면서 비하여 무색질 점자량으로
제조한 유화물 점착제품은 593 g · cm으로 지하하였으나
sucinylation 처리한 젠란트로 제조한 유화물 점착제품은
809 g · cm 으로 개선되었다. 이와같은 결과는 무수각 젠란
트로 제조한 유화물의 경우 유화안정성이 낮아 표면으로
지질이 상당히 유리하였으며 sucinylation 처리한 젠란트
로 제조한 유화물의 경우 유화안정성이 높아 표면으로
유리되는 지질의 양이 적었기 때문으로 판단되었다. 잔균검
사 결과 색조의 경우 유화물 점착제품이 유화물 무점착제
품에 비하여 색조가 연화하여 좋았으나 유화물의 종류에 따
른 차이는 없었다. 조작감은 유화물 무점착제품에 비하여
sucinylation 처리한 젠란트로 제조하여 유화안정성이
높은 유화물 점착제품의 경우 개선되었으나, 무수각 젠란
트로 제조하여 유화안정성이 낮은 유화물 점착제품의 경
우 오히려 지하하였다. 흔들직의ukt도 조작감의 경우와 유사한 결과를 얻었다. 따라서 sucinylation 처리한 젠란트로 유화물을 제조하여 적색유류 엘제품의 제조
시 점착된다면 적색유류 엘제품의 색조 및 조작감을 개
선할 수 있으려 판단되었다.

감사의 글

이 논문은 1994년도 한국학술진흥재단의 공모과제(진균
교수) 연구비에 의하여 연구된 결과의 일부이며, 이에 감사
드립니다.

참고 문헌
1. 이응호, 이정석, 손광태, 김건수, 오광수, 조순영 (1993) 정어
리 초절임제품의 가공. 한국농업학회지 36, 339-345.
2. 박철영 (1970) 산부산과의 양분적. 홍삼의 양분적
가공. 홍산학회지, 풍도, pp 300-312.
3. 희문병 (1978) 寶魚類의加工特性. New Food Industry
20, 8-13.
5. 고기질류.기록. 1976년, 田中武夫, 竹井誠. 田中和吉 (1957)
생산기술로서의 サメ皮의諸性質について, 東北水研報,
No 15, 95-238.
6. 김건수 (1996) Succinylation에 의한 봉정어 씩질 젠란트
의 기능성 개선. 한국농업학회지 39, 123-127.
7. 일본식성식류(1976) 食品衛生検査指針, Ⅰ, 撥散性塩基塩素,
日本食品衛生協会, 東京, pp.30-32
8. APHA (1970) Recommended procedures for the bac-
teriological examination of sea-water and shellfish. 3rd
9. 岩見貞治 (1974) ヒストミンのイオン交換クロマトグラフ
イ. 水産生物化学. 食品衛生検査. 恒星社全集, 東京, pp.
300-305
extractive components of bigeye tuna and pacific halibut
meats by thermal processing at high temperature of 60
values of 8 to 21. Bol. Japan. Soc. Sci. Fish. 53, 1457-
1461
11. Bligh, E. G. and W. J. Dyer (1959) A rapid method of to-
tal lipid extraction and purification. Can. J. Biochem.
Physiol. 37, 911-917
12. AOAC (1984) Official methods of analysis, 14th ed., As-
13. Metcalfe, L. D. and A. A. Schmist (1966) Rapid pre-
paration of fatty acid esters from lipids for gas chro-
matographic analysis. Anal. Chem. 38, 514
14. 이응호, 이정석, 김건수, 안창범, 이응호 (1991) 복면이 좋
은 정어리 단백질 농축물의 가공. 2. 정어리 단백질 농축물
의 저장안정성 및 이용, 한국수산학회지 24, 144-151
15. 新保直雄, 合谷啓佐, 山野喜正, 伊奈和夫 (1993) 酵素的合
成したリン脂質誘導体の乳化特性. 日本食品工業学会誌.
40, 755-763
of food proteins related to their ability to stabilize oil in
water emulsions. J. Food Sci. 53, 845-848
17. 今井信明, 三田啓久 (1989) ヤマネズの衛生管理,その5,品
質管理, 油脂 42, 72-83
Biometrics 11, 1-5
業 7, 89-96
20. 大塚雅郎 (1990) ゲル化性としてのペクチン, New Food In-
dustry 32, 17-21
21. 押田一夫 (1975) ヤマネズの製造に関する研究,日本食品工
業学会誌, 25, 526-535
22. 李英碧 (1986) マイクルと試験に鑑みて宜する, 関西食品工
業学会誌 15, 119-127
23. 乾羽佐二, 山本春幸, 山村光, 加藤哲, 大井淳夫, 中山歳雄
(1989) マイクル精製油加熱ゲルに対する脂質添加, 日本食
品工業学会誌 36, 848-851
of sardine acetylated proteins. Thesis submitted for the
degree of doctor in faculty of fisheries, Hokkaido university.
Quality improvement of surimi gel from fish with a red muscle by emulsion curd containing a modified fish skin gelatin

Jin-Soo Kim *(Department of Marine Food Science and Technology, Gyeongsang National University, Tongyeong 650-160, Korea)*

Abstract: As a part of investigation for quality improvement of surimi gel from fish with a red muscle by addition of emulsion curd, we investigated the processing conditions of emulsion curd contained succinylated gelatin from conger eel skin as an emulsifier and emulsion curd-added surimi gel. Activity and stability of emulsion curd on standing at room temperature, chilled temperature and vibration were remarkably improved by the addition of 15 times of soybean oil and 5 times of water to succinylated gelatin from conger eel skin. The proximate composition of the emulsion curd was moisture 18%, protein 5%, lipid 76% and ash 0.5% and its appearance was white. Peroxide value and fatty acid composition of emulsion curd contained succinylated gelatin as an emulsifier were similar to these of soybean oil. By the addition of 6% of emulsion curd to mackerel surimi, gel strength, appearance and texture of the resulting surimi gel were improved, while its peroxide value and brown pigment revealed minor change. From the results of volatile basic nitrogen, viable cell counts and histamine content, the emulsion curd-added mackerel surimi gel can be safe in the sense of food sanitation.