Remarks on M-ideals of compact operators

  • Published : 1996.08.01


A closed subspace J of a Banach space X is called an M-ideal in X if the annihilator $J^\perp$ of J is an L-summand of $X^*$. That is, there exists a closed subspace J' of $X^*$ such that $X^* = J^\perp \oplus J'$ and $\left\$\mid$ p + q \right\$\mid$ = \left\$\mid$ p \right\$\mid$ + \left\$\mid$ q \right\$\mid$$ wherever $p \in J^\perp and q \in J'$.