THE N-TH PRETOPOLOGICAL MODIFICATION OF CONVERGENCE SPACES

Sang-Ho Park

Abstract. In this paper, we introduce the notion of the n-th pretopological modification. Also, we find some properties which hold between convergence quotient maps and n-th pretopological modifications.

1. Introduction

A convergence structure defined by Kent [4] is a correspondence between the filters on a given set \(X \) and the subsets of \(X \) which specifies which filters converge to points of \(X \). This concept is defined to include types of convergence which are more general than that defined by specifying a topology on \(X \). Thus, a convergence structure may be regarded as a generalization of a topology.

With a given convergence structure \(q \) on a set \(X \), Kent [4] introduced an associated convergence structure which is called a pretopological modification.

Also, Kent [6] introduced a convergence quotient map, which is a quotient map for a convergence space.

In this paper, with a convergence structure \(q \), we introduce notions of the filter \(V_q^n(x) \) and the n-th pretopological modification of \(q \) which is denoted by \(\pi_n(q) \), where \(n \in \mathbb{N} \cup \{\infty\} \).

In Theorem 7, we show that for a map \(f: (X, q) \to (Y, p) \), \(V_p(f(x)) = f(V_q(x)) \) iff \(V_p^n(f(x)) = f(V_q^n(x)) \) for each \(n \in \mathbb{N} \cup \{\infty\} \).

Received April 27, 1996. Revised September 13, 1996.
1991 AMS Subject Classification: 54A05, 54A20.
Key words and phrases: convergence space(structure), convergence quotient map, n-th pretopological modification.

Supported by the Basic Science Research Institute Program, Ministry of Education, 1996, Project No. BSRI-96-1406.
In Theorem 10, we show that if p is pretopological and $f: (X, q) \to (Y, p)$ is a convergence quotient map, then $f: (X, \pi_n(q)) \to (Y, \pi_n(p))$ is also a convergence quotient map for each $n \in N \cup \{\infty\}$.

2. Preliminaries

A convergence structure q on a set X is defined to be a function from the set $F(X)$ of all filters on X into the set $P(X)$ of all subsets of X, satisfying the following conditions:

1. $x \in q(\hat{x})$ for all $x \in X$;
2. $\Phi \subseteq \Psi$ implies $q(\Phi) \subseteq q(\Psi)$;
3. $x \in q(\Phi)$ implies $x \in q(\Phi \cap \hat{x})$,

where \hat{x} denotes the principal ultrafilter containing $\{x\}$; Φ and Ψ are in $F(X)$. Then the pair (X, q) is called a convergence space. If $x \in q(\Phi)$, then we say that Φ q-converges to x. The filter $V_q(x)$ obtained by intersecting all filters which q-converge to x is called the q-neighborhood filter at x. If $V_q(x)$ q-converges to x for each $x \in X$, then q is said to be pretopological and the pair (X, q) is called a pretopological convergence space.

Let $C(X)$ be the set of all convergence structures on X, partially ordered as follows:

$q_1 \leq q_2$ iff $q_2(\Phi) \subseteq q_1(\Phi)$ for all $\Phi \in F(X)$.

If $q_1 \leq q_2$, then we say that q_1 is coarser than q_2, and q_2 is finer than q_1. By [5], we know that if q_1 is pretopological, then

$q_1 \leq q_2$ iff $V_{q_1}(x) \subseteq V_{q_2}(x)$ for all $x \in X$.

For any $q \in C(X)$, we define a related convergence structure $\pi(q)$, as follows:

$x \in \pi(q)(\Phi)$ iff $V_q(x) \subseteq \Phi$.

In this case, $\pi(q)$ is called the pretopological modification of q, and the pairs $(X, \pi(q))$ is called the pretopological modification of (X, q).
The n-th pretopological modification of convergence spaces

Proposition 1 ([4]). \(\pi(q) \) is the finest pretopological convergence structure coarser than \(q \).

Let \(f \) be a map from \(X \) into \(Y \) and \(\Phi \) a filter on \(X \). Then \(f(\Phi) \) means the filter generated by \(\{ f(F) \mid F \in \Phi \} \). ([1])

Proposition 2. Let \(f : X \to Y \) be a map and \(\{ \Phi_i \mid i \in I \} \) a family of filters on \(F(X) \). Then \(f(\bigcap_{i \in I} \Phi_i) = \bigcap_{i \in I} f(\Phi_i) \).

Proof. Let \(B \in f(\bigcap_{i \in I} \Phi_i) \). Then there exists \(A \in \bigcap_{i \in I} \Phi_i \) such that \(f(A) \subseteq B \). Thus \(A \in \Phi_i \) and so \(f(A) \in f(\Phi_i) \) for all \(i \in I \). Finally, \(f(A) \in \bigcap_{i \in I} f(\Phi_i) \) and so \(B \in \bigcap_{i \in I} f(\Phi_i) \).

Conversely, let \(B \in \bigcap_{i \in I} f(\Phi_i) \). Then, for each \(i \in I \), there exists \(F \in \Phi_i \) such that \(f(F) \subseteq B \). Since \(F \subseteq f^{-1}(B) \), we obtain \(f^{-1}(B) \in \Phi_i \) for each \(i \in I \) and so \(f^{-1}(B) \subseteq \bigcap_{i \in I} \Phi_i \). While, since \(B \supseteq f(f^{-1}(B)) \subseteq f(\bigcap_{i \in I} \Phi_i) \), we obtain \(B \in f(\bigcap_{i \in I} \Phi_i) \). This completes the proof.

Let \(f \) be a map from a convergence space \((X, q) \) to a convergence space \((Y, p) \). Then \(f \) is said to be *continuous* at a point \(x \in X \), if the filter \(f(\Phi) \) on \(Y \) \(p \)-converges to \(f(x) \) for every filter \(\Phi \) on \(X \) \(q \)-converging to \(x \). If \(f \) is continuous at every point \(x \in X \), then \(f \) is said to be continuous.

Let \(q \) and \(q' \) be in \(C(X) \), and \(p \) and \(p' \) in \(C(Y) \). Then, we know that if \(q \leq q' \), \(p \geq p' \) and \(f : (X, q) \to (Y, p) \) is continuous, then \(f : (X, q') \to (Y, p') \) is continuous.

Proposition 3 ([6]). (1) If \(f : (X, q) \to (Y, p) \) is continuous at \(x \in X \), then \(V_p(f(x)) \subseteq f(V_q(x)) \).

(2) If \(p \) is pretopological and \(V_p(f(x)) \subseteq f(V_q(x)) \), then \(f : (X, q) \to (Y, p) \) is continuous at \(x \in X \).

Let \((X, q) \) be a convergence space. Then the set function \(I_q : P(X) \to P(X) \) is defined by as follows:

\[
I_q(A) = \{ x \in A \mid A \in V_q(x) \}
\]
for each $A \subset X$. Then, I_q has the following properties:

(1) $I_q(\emptyset) = \emptyset$, $I_q(A) \subset A$

(2) $I_q(X) = X$

(3) $I_q(A \cap B) = I_q(A) \cap I_q(B)$

(4) $A \subset B$ implies $I_q(A) \subset I_q(B)$

for each $A, B \subset X$. But, in general, $I_q(I_q(A)) \neq I_q(A)$.

Also, we define a set function $I_q^n : P(X) \rightarrow P(X)$ for each $n \in N \cup \{\infty\}$, where N is the set of positive integers, as follows:

$I_q^1(A) = I_q(A)$,

$I_q^{n+1}(A) = I_q(I_q^n(A))$ if $n \in N$,

$I_q^\infty(A) = \cap \{I_q^n(A) \mid n \in N\}$.

It is clear that $I_q^n(A \cap B) = I_q^n(A) \cap I_q^n(B)$ for each $n \in N \cup \{\infty\}$ and $A, B \subset X$.

Indeed, I_q^n has all of the properties of a topological interior operator except idempotency.

Let $V_q^n(x) = \{A \subset X \mid x \in I_q^n(A)\}$. Then $V_q^n(x)$ is a filter on X for each $n \in N \cup \{\infty\}$, and we know that for each $n \in N$,

$I_q^n(A) \supset I_q^{n+1}(A) \supset I_q^\infty(A)$ for each $A \subset X$,

and

$V_q^n(x) \supset V_q^{n+1}(x) \supset V_q^\infty(x)$ for each $x \in X$.

Define a structure $\pi_n(q)$ for each $n \in N \cup \{\infty\}$ as follows:

$x \in \pi_n(q)(\Phi)$ iff $V_q^n(x) \subset \Phi$

for each $\Phi \in F(X)$. It is not difficult to show that for each $n \in N \cup \{\infty\}$,

$V_{\pi_n(q)}(x) = V_q^n(x)$ for each $x \in X$,

$I_{\pi_n(q)}(A) = I_q^n(A)$ for all $A \subset X$.
and for each \(n \in \mathbb{N} \),

\[
q \geq \pi_n(q) \geq \pi_{n+1}(q) \geq \pi_\infty(q).
\]

While, since \(V_q(x) \subset \hat{x} \), we obtain \(x \in \pi_n(q)(\hat{x}) \) for each \(x \in X \). Also \(\Phi \subset \Psi \in \mathcal{F}(X) \) implies \(\pi_n(q)(\Phi) \subset \pi_n(q)(\Psi) \).

Let \(x \in \pi_n(q)(\Phi) \). Then \(V_q^n(x) \subset \Phi \). Since \(V_q^n(x) \subset \hat{x} \), we obtain \(V_q^n(x) \subset \Phi \cap \hat{x} \) and so \(x \in \pi_n(q)(\Phi \cap \hat{x}) \). Also, \(x \in \pi_n(q)(V_q^n(x)) = \pi_n(q)(V_{\pi_n(q)}(x)) \). Thus, \(\pi_n(q) \) is a pretopological convergence structure on \(X \), which is called the \(n \)-th pretopological modification of \(q \). Also, \((X, \pi_n(q)) \) is called the \(n \)-th pretopological modification of \((X, q) \).

Proposition 4. For \(q \in C(X) \), \(\cap \{ V_q^n(x) \mid n \in \mathbb{N} \} = V_q^\infty(x) \).

Proof. Let \(A \in V_q^\infty(x) \). Then \(x \in I_q^\infty(A) \) and so \(x \in I_q^n(A) \) for all \(n \in \mathbb{N} \). Thus, \(A \in V_q^n(x) \) for all \(n \in \mathbb{N} \).

Conversely, let \(A \in V_q^n(x) \) for all \(n \in \mathbb{N} \). Then \(A \in V_q^\infty(x) \). This completes the proof.

Proposition 5. Let \(f : (X, q) \to (Y, p) \) be a map and \(n \in \mathbb{N} \cup \{ \infty \} \). Then the following are equivalent:

(a) \(V_p^n(f(x)) = f(V_q^n(x)) \) for each \(x \in X \).

(b) \(f^{-1}(I_p^n(B)) = I_q^n(f^{-1}(B)) \) for each \(B \subset Y \).

Proof. First, assume that (a) is true, and let \(x \in f^{-1}(I_p^n(B)) \). Then \(f(x) \in I_p^n(B) \) and so \(B \in V_p^n(f(x)) = f(V_q^n(x)) \). Thus, \(f^{-1}(B) \in V_q^n(x) \) and so \(x \in I_q^n(f^{-1}(B)) \). Finally, \(f^{-1}(I_p^n(B)) \subset I_q^n(f^{-1}(B)) \). The reverse inequality is proved by the counter-order.

Next, assume that (b) is true, and let \(B \in V_p^n(f(x)) \). Then \(f(x) \in I_p^n(B) \) and so \(x \in f^{-1}(I_p^n(B)) = I_q^n(f^{-1}(B)) \). Thus \(f^{-1}(B) \in V_q^n(x) \) and so \(B \in f(V_q^n(x)) \). Finally, \(V_p^n(f(x)) \subset f(V_q^n(x)) \). The reverse inequality is proved by the counter-order. This completes the proof.

Let \((X, q) \) be a convergence space, \(Y \) a nonempty set, and a map \(f : (X, q) \to Y \) a surjection. The convergence quotient structure \(p \) on \(Y \) is defined by specifying that for any \(y \in Y \) and \(\Psi \in \mathcal{F}(Y) \),

\[
y \in p(\Psi) \text{ iff there exist } x \in f^{-1}(y) \text{ and } \Phi \in \mathcal{F}(X) \text{ such that } \Psi \supset f(\Phi) \text{ and } x \in q(\Phi).
\]
In this case, \(f:(X,q) \rightarrow (Y,p) \) is called a *convergence quotient map* and the pair \((Y,p)\) is called a *convergence quotient space*.

Kent [6] proved that for a surjection \(f:(X,q) \rightarrow (Y,p) \), \(f \) is a convergence quotient map if and only if \(p \) is the finest convergence structure on \(Y \) relative to which \(f \) is continuous.

Proposition 6 ([6]). If \(f:(X,q) \rightarrow (Y,p) \) is a convergence quotient map, then, for each \(y \in Y \), \(V_p(y) = \cap \{ f(V_q(x)) \mid x \in f^{-1}(y) \} \).

3. Main Results

Theorem 7. Let \(f:(X,q) \rightarrow (Y,p) \) be a map. Then the following are equivalent:

(a) \(V_p(f(x)) = f(V_q(x)) \).

(b) \(V_p^n(f(x)) = f(V_q^n(x)) \) for each \(n \in \mathbb{N} \cup \{ \infty \} \).

Proof. It is clear that (b) implies (a). We will use the induction to prove that (a) implies (b). Assume that \(V_p^k(f(x)) = f(V_q^k(x)) \), and let \(B \in V_p^{k+1}(f(x)) \). Then \(f(x) \in I_p^{k+1}(B) = I_p(I_p^k(B)) \) and so \(I_p^k(B) \in V_p(f(x)) = f(V_q(x)) \). By the assumption and Proposition 5, \(f^{-1}(I_p^k(B)) = I_q^k(f^{-1}(B)) \subseteq V_q(x) \). Thus \(x \in I_q(I_q^k(f^{-1}(B))) = I_q^{k+1}(f^{-1}(B)) \) and so \(f^{-1}(B) \in V_q^{k+1}(x) \). Finally, \(B \in f(V_q^{k+1}(x)) \). This means \(V_p^{k+1}(f(x)) \subseteq f(V_q^{k+1}(x)) \). The reverse inequality is proved by the counter-order.

In that case \(n = \infty \), let \(B \in V_p^\infty(f(x)) \). Then \(f(x) \in I_p^\infty(B) \) and so \(f(x) \in I_p^n(B) \) for each \(n \in \mathbb{N} \). Thus \(B \in V_p^n(f(x)) = f(V_q^n(x)) \) for each \(n \in \mathbb{N} \). By Proposition 2, \(B \in \cap \{ f(V_q^n(x)) \mid n \in \mathbb{N} \} = f(\cap \{ V_q^n(x) \mid n \in \mathbb{N} \}) = f(V_q^\infty(x)) \). Finally, \(V_p^\infty(f(x)) \subseteq f(V_q^\infty(x)) \). The reverse inequality is proved by the counter-order. This completes the proof.

Corollary 8. If \(f:(X,q) \rightarrow (Y,p) \) is continuous, then for each \(n \in \mathbb{N} \cup \{ \infty \} \), \(f:(X,\pi_n(q)) \rightarrow (Y,\pi_n(p)) \) is continuous.

Proof. It is clear that “=” is replaced by “C” in the above Proposition 5 and Theorem 7, the statements are true. Consider that \(\pi_n(q) \) is pretopological for each \(n \in \mathbb{N} \cup \{ \infty \} \). Since \(V_{\pi_n(p)}(f(x)) = V_p^n(f(x)) \) and \(V_{\pi_n(q)}(x) = V_q^n(x) \), by Proposition 3, the proof is complete.
Theorem 9. Let \(f : (X, q) \to (Y, p) \) be continuous. Then the following hold:

1. If \(q \) is pretopological and for each \(y \in Y \) there exists \(x \in f^{-1}(y) \) such that \(V_p(y) = f(V_q(x)) \), then \(p \) is pretopological and \(f : (X, q) \to (Y, p) \) is a convergence quotient map.

2. If \(p \) is pretopological and \(f : (X, q) \to (Y, p) \) is a convergence quotient map, then for each \(y \in Y \) there exists \(x \in f^{-1}(y) \) such that \(V_p(y) = f(V_q(x)) \).

Proof. (1) Suppose that for each \(y \in Y \), there exists \(x \in f^{-1}(y) \) such that \(V_p(y) = f(V_q(x)) \). Since \(q \) is pretopological, we obtain \(x \in q(V_q(x)) \). From the continuity of \(f : (X, q) \to (Y, p) \), we obtain that \(y = f(x) \in p(V_q(x)) \) and so \(p \) is pretopological.

Let \(f : (X, q) \to (Y, r) \) be a convergence quotient map. Then \(p \leq r \). While, let \(\Psi \in F(Y) \) and \(y \in p(\Psi) \). Then \(\Psi \supset V_p(y) = f(V_q(x)) \) for some \(x \in f^{-1}(y) \). Since \(x \in q(V_q(x)) \) and \(f : (X, q) \to (Y, r) \) is a convergence quotient map, we obtain \(y \in r(\Psi) \). Thus \(p(\Psi) \subset r(\Psi) \) and so \(p \geq r \). Finally, \(p = r \). The proof is complete.

(2) Let \(y \in Y \). Since \(p \) is pretopological, we obtain \(y \in p(V_p(y)) \). Since \(f : (X, q) \to (Y, p) \) is a convergence quotient map, there exist \(x \in f^{-1}(y) \) and \(\Phi \in F(X) \) such that \(V_p(y) \supset f(\Phi) \) and \(x \in q(\Phi) \). Thus, \(V_q(x) \subset \Phi \) and so \(V_p(y) \supset f(V_q(x)) \). Since \(f : (X, q) \to (Y, p) \) is continuous, we obtain \(V_p(y) \subset f(V_q(x)) \). Finally, \(V_p(y) = f(V_q(x)) \). This completes the proof.

Theorem 10. If \(p \) is pretopological and \(f : (X, q) \to (Y, p) \) is a convergence quotient map, then the following hold for each \(n \in N \cup \{ \infty \} \):

1. For each \(y \in Y \), there exists \(x \in f^{-1}(y) \) such that \(V_{p^n}(y) = f(V_{q^n}(x)) \).

2. \(f : (X, \pi_n(q)) \to (Y, \pi_n(p)) \) is a convergence quotient map.

3. For each \(y \in Y \), \(V_{p^n}(y) = f(\cap \{ V_{q^n}(x) \mid x \in f^{-1}(y) \}) \).

Proof. (1) By Corollary 8, \(f : (X, \pi_n(q)) \to (Y, \pi_n(p)) \) is continuous. Since \(f : (X, q) \to (Y, p) \) is a convergence quotient map and \(p \) is pretopological, by Theorem 9 (2), for each \(y \in Y \), there exists \(x \in f^{-1}(y) \) such that \(V_p(y) = f(V_q(x)) \). Thus, by Theorem 7, \(V_{p^n}(y) = f(V_{q^n}(x)) \) for each \(n \in N \cup \{ \infty \} \).
(2) Since $V_{\pi_n(p)}(y) = f(V_{\pi_n(q)}(x))$ and $\pi_n(q)$ is pretopological, by Theorem 9 (1), $f:(X, \pi_n(q)) \to (Y, \pi_n(p))$ is a convergence quotient map.

(3) By the above (2) and Proposition 6, the proof is complete.

References

Department of Mathematics and Research Institute of Natural Science
Gyeongsang National University
Chinju 660-701, Korea