Interface formation and thermodynamics between SiC and thin metal films

SiC와 금속박막간의 계면형성 및 열역학

  • Chang-Sung Lim (Dept. of Material Chemical Engineering, Chonnam National University, Kwangju 500-757, Korea) ;
  • Kwang-Bo Shim (Ceramic Materials Research Institute, Hanyang University, Seoul 133-791, Korea) ;
  • Dong-Woo Shin (Dept. of Inorganic Materials Engineering, Gyeongsang National University, Chinju 660-7f01, Korea) ;
  • Keun-Ho Auh (Ceramic Materials Research Institute, Hanyang University, Seoul 133-791, Korea)
  • Published : 1996.03.01

Abstract

The interface formation and reaction-product morphology between SiC and thin metal films were studied at temperatures between 550 and $1450^{\circ}C$ for various times. The typical reaction layer sequence was CoSi/CoSi+C/CoSi/CoSi+C/ $\cdots$ /SiC reaction at 1050 and $1250^{\circ}C$ for 2 h, while $Ni_2Si/Ni_2Si+C/Ni_2Si/Ni_2Si+C/ {\cdots} /SiC$ at 950 and 105$0^{\circ}C$ for 2 h. Carbon precipitated preferentially on the outer surface and crystallized as graphite above $1450^{\circ}C$ for SiC/Co reaction zone and $1250^{\circ}C$ for SiC/Ni. The mechanism of the periodic band structure formation with carbon precipitation behaviour was discussed in terms of thermodynamic considerations.

Keywords

References

  1. Mat. Sci. Res. v.21 M.G. Nicholas
  2. J. Mater. Res. v.5 D.J. Larkin;L.V. Interrante;A. Bose
  3. Ceramic Bulletin v.68 R.E. Loehman
  4. J. Am. Ceram. Soc. v.71 R.C.J. Schiepers;F.J.J. van Loo;G.D. With
  5. Ber. Bunsenges. Phys. Chem. v.93 M. Backhaus-Ricoult
  6. J. Mater. Res. v.6 T.C. Chou;A. Joshi;J. Wadsworth
  7. J. Mat. Sci. v.27 P. Nikolopoulos;S. Agathopoulos;G.N. Angelopoulos;A. Naoumidis;H. Grubmeier
  8. cfi/Ber. DKG v.66 E. Gyarmati;W. Kesternich;R. Forthmann
  9. J. Mater. Res. v.5 D.L. Yaney;A. Joshi
  10. J. Mater. Res. v.5 T.C. Chou;T.G. Nieh
  11. J. Mater. Res. v.5 V.M. Bermudes;R. Kaplan
  12. Nuclear Instruments and Methods in Physics Research v.B7 D. Fathy;O.W. Holland;J. Narayan;B.R. Appleton
  13. J. Vac. Sci. Technol. v.B6 H. Hochst;W. Niles;G.W. Zajac;T.H. Fleisch;B.C. Johnson;J.M. Meese
  14. J. Appl. Phys. v.66 W.F.J. Slijkerman;A.E.M.J. Fischer;J. F. van der Veen;I. Ohdomari;S. Yoshida;S. Misawa
  15. J. Appl. Phys. v.62 I. Ohdomari;S. Sha;H. Aochi;T. Chikyow;S. Suzuki
  16. J. Appl. Phys. v.57 C.S. Pai;C.M. Hanson;S.S. Lau
  17. J. Appl. Phys. v.56 J. Narayan;D. Fathy;O.W. Holland;B.R. Appleton;R.F. Davis
  18. J. Kor. Assoc. of Crystal Growth v.5 C.S. Lim
  19. Metallurgical Thermochemistry O. Kubaschewski;C.B. Alcock
  20. J. Appl. Phys. v.49 S.S. Lau;J.W. Mayer
  21. J. Appl. Phys. v.49 G.J. van Gurp;W.F. van der Weg;D. Sigurd
  22. Thin Solid Films v.128 F.M. d'Heurle;C.S. Petersson
  23. Thin Solid Films v.93 A.P. Botha;R. Pretorius
  24. Appl. Phys. Lett. v.28 R.M. Walser;R.W. Bene
  25. Thin Solid Films v.143 C.D. Lien;M.A. Nicolet;S.S. Lau
  26. Thin Solid Films v.25 K.N. Tu;W.K. Chu;J.W. Mayer
  27. J. Appl. Phys. v.55 F.d'Heurle;C.S. Peterson;J.E.E. Baglin;S.J. La Placa;C.Y. Wong