Enhancement of $Bi_2Sr_2Ca_2Cu_3O_{10}$ Formation using $Bi_2Sr_2CuO_6$ and $(Ca_{0.91}Sr_{0.09})CuO_2$ Precursors

$Bi_2Sr_2CuO_6$$(Ca_{0.91}Sr_{0.09})CuO_2$를 이용한 $Bi_2Sr_2Ca_2Cu_3O_{10}$ 고온초전도체의 합성촉진

  • Lee, Hwa-Sung (Dept. of Materials Sciences and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Park, Min-Soo (Dept. of Materials Sciences and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Ahn, Byung-Tae (Dept. of Materials Sciences and Engineering, Korea Advanced Institute of Science and Technology)
  • 이화성 (한국과학기술원 재료공학과) ;
  • 박민수 (한국과학기술원 재료공학과) ;
  • 안병태 (한국과학기술원 재료공학과)
  • Published : 1996.07.01

Abstract

To enhance the formation of Bi,Sr,Ca,Cu,O,(Bi-2223) single phase in a shorter reaction time, the intermediate compounds such as Bi,Sr,CuO,(Bi-2201). BizSr,CaCuz08(Bi-2212) and (Ca, Sr,, ,9)CuOz in the Bi-Sr-Ca-Cu-0 system were used as the precursors. The formation of Bi-2223 was enhanced in the mixture of Bi-2201 and (Ca, ,,Sr, 119)C~eOsZpe,c ially from the mixture with (Ca, 9I Sr, ,,)CuO,-rich composition compared to Bi, iPb, 4Sr2Ca,Cu3010-cxo mposition. The formation of Bi- 2223 essentially completed within 60h at 860$^{\circ}$C and 870$^{\circ}$C. However, a small amount of the remnant Bi-2212 phase did not disappear even after a prolonged reaction at 870'C. The merit of the proposed synthetic method using the intermediate precusors can be summarized as a shorter reaction time for the formation of Bi-2223 phase, in addition to a smaller amount of second phases compared to the conventional solid-state reaction method.

Keywords

References

  1. Z. Phys. B v.68 C. Michel;M. Hervieu;M. M. Borel;A. Grandin;F. Deslandes; J. Provost;B. Raveau
  2. Jpn. J. Appl. Phys. v.27 H. Maeda;Y. Tanaka;M. Fukutomi;T. Asano
  3. J. Am. Ceram. Soc. v.75 no.5 Y. L. Chen;R. Stevans
  4. J. Appl. Phys. v.68 no.5 L. Pierre;J. Schneck;D. Morin;J. C. Toledano;J. Primot;C. Daguet;H. Savary
  5. Supercond. Sci. Technol. v.5 K. Tachikawa;T. Inoue;K. Zama;Y. Hikichi
  6. Jpn. J. Appl. Phys. v.31 K. Tachikawa;T. Watanabe;T. Inoue;K. Shirasu
  7. Jpn. J. Appl. Phys. v.31 S. Hontsu;O. Nishibuchi;T. Horiuchi;K. Ogura;J. Ishii;T. Kawai;S. Kawai
  8. J. Mater. Chem. v.4 no.4 P. V. P. S. S. Sastry;A. R. West
  9. Supercond. Sci. Technol. v.7 P. Strobel;V. Pankov
  10. Physica C v.250 P. V. P. S. S. Sastry;A. R. West
  11. Supercond. Sci. Technol. v.7 S. C. Kwon;H. G. Lee;B. T. Ahn;S. W. Nam
  12. Nature v.334 no.231 T. Siegrist;S. M. Zahurak;D. W. Murphy;R. S. Roth
  13. J. Ceram. Soc. Jpn. v.97 no.143 H. Yamane;Y. Miyazaki;T. Hirai
  14. Jpn. J. Appl. Phys. v.27 A. Sumiyama;T. Yoshitomi;H. Endo;J. Tsuchiya;N. Kijima;M. Mizuno;Y. Oguri
  15. Bd v.81 Schulze. K;P. Majewski;B. Hettich;G. Petzow;Z.Metallkde
  16. J. Am. Ceram. Soc. v.72 J. A. Saggio;K. Sujata;J. Hahn;S. J. Hwu;K. R. Poeppelmeier;T. O. Mason
  17. J. Res. Natl. Inst. Stand. Technol. v.95 R. S. Roth;S. J. Rawn;B. P. Burton;F. Beech
  18. Physica C v.158 G. Galestani;C. Rizzoli;G. D. Andreetti;E. Buluggiu;D. C. Giori;A. Valenti;A. Vera;G. Amoretti