Copper Film Growth by Chemical Vapor Deposition: Influence of the Seeding Layer

ICB seeding에 의한 CVD Cu 박막의 증착 및 특성 분석

  • Yoon, Kyoung-Ryul (Dept. of Ceramic Engineering, Yonsei University) ;
  • Choi, Doo-Jin (Dept. of Ceramic Engineering, Yonsei University) ;
  • Kim, Seok (Dept. of Ceramic Engineering, Yonsei University) ;
  • Kim, Ki-Hwan (Dept. of Ceramic Engineering, Yonsei University) ;
  • Koh, Seok-Keun (Div. of Ceramics, Korea Institute of Science & Technology)
  • 윤경렬 (연세대학교 세라믹공학과) ;
  • 최두진 (연세대학교 세라믹공학과) ;
  • 김석 (연세대학교 세라믹공학과) ;
  • 김기환 (연세대학교 세라믹공학과) ;
  • 고석근 (한국과학기술연구원 세라믹스부)
  • Published : 1996.07.01

Abstract

Cu films were deposited by chemical wapor deposition on the as-received substrates (TiN/Si) and three kinds of Cu-seeded substrates (Cu/TiN/Si) which had seeding layer in the thick ness of 5 ${\AA}$ and 130 ${\AA}$ coated by ICB(Ionized Cluster Beam) method. The effect of Cu seeding layers on the growth rate, crystallinity, grain size uniformity and film adhesion strength of final CVD-Cu films was investigated by scanning eletron microscopy(SEM), X-ray diffractometry and scratch test. The growth rate was found to incresase somewhat in the case of ICB-seeding. The XRD patterns of the Cu films on the as-received substrate and ICB Cu-seeded substrates exhibited the diffraction peaks corresponding to FCC phase, but the peak intensity ratio($I_{111}/I_{200}$) of Cu films deposited on the ICB Cu-seeded substrates increased compared with that of Cu films on the as-received substrate. The resistivity of final Cu film on 40 ${\AA}$ seeded substrate was observed as the lowest value, 2.42 $\mu\Omega\cdot$cm compared with other Cu films. In adhesion test, as the seeding thickness increased from zero to 130 ${\AA}$, the adhesion strength increased from 21N to 27N.

Keywords

References

  1. Thin Solid Films v.236 S.P.Murarka;R.J.Gutmann;A.E.Kaloyeros;W.A.Landford
  2. J. Appl. Phys. v.70 J.Li;J.W.Mayer;E.G.Colgan
  3. J. Electrochem. Soc. v.140 no.3 B.Lecohier;B.Calpini;J.M.Plilippoz;H.V.Bergh;D.Laub;P.A.Buffat
  4. J. Electrochem. Soc. v.138 W.G.Lai;Y.Xie;G.L.Griffin
  5. The Materials Science of Thin Films M.Ohring
  6. J. Vac. Sci. Technol. B v.10 no.1 B.Lecohier;J.M.Plilippoz;H.V.Bergh
  7. J. Electrochem. Soc. v.140 no.11 D.H.Kim;R.H.Wentorf;W.N.Gill
  8. J. Appl. Phys. v.72 no.5 B.Lecohier;B.Calpini;J.M.Plilippoz;H.V.Bergh
  9. J. Appl. Phys. v.70 no.7 J.Pelletier;R.Pantel;J.C.Oberlin
  10. J. Am. Chem. Soc. v.115 Gregory S.Girolami;Lawrence H. Dubois
  11. J. Electrochem. Soc. v.140 no.11 D.H.Kim;R.H.Wentorf;W.N.Gill
  12. Proc. Advanced Metallization for ULSI Applications Conference T.Nguyen;L.J.Charneski
  13. Ionized-Cluster Beam deposition and Epitaxy T.Takagi
  14. Mat. Res. Soc. Symp. Proc. v.391 S.S.Yoon;S.W.Kang;S.S.Chun
  15. Nucl. Instrum. Methods Phys. Res. v.B37 I.Yamada
  16. J. Electrochem. Soc. v.139 no.L37 J.Li;Y.Shacham-Diamond
  17. J. Electrochem. Soc. v.140 no.5 A.Jain;K.M.Chi;T.T.Kodas;M.J.Hampden-Smith
  18. Phys. Rev. v.B28 G.Rossi;I.Landau
  19. J. Electrochem. Soc. v.136 no.11 D.Temple;A.Reisman
  20. New J. Chem. v.14 H.D.Kaesz(et al.)
  21. J. Vac. Sci. Technol. S.K.Koh;K.H.Kim;W.K.Choi;H.J.Jung
  22. 한국진공학회지 v.4 이원준;민재식;라사균;김동원;박종욱
  23. Appl. Phys. Lett. v.60 no.25 B.Lecohier;B.Calpini;J.M.Pliippoz;H.V.Bergh