Bayesian Analysis under Heavy-Tailed Priors in Finite Population Sampling

  • Kim, Dal-Ho (Department of Statistics, Kyungpook National University, Taegu, 702-701) ;
  • Lee, In-Suk (Department of Statistics, Kyungpook National University, Taegu, 702-701) ;
  • Sohn, Joong-Kweon (Department of Statistics, Kyungpook National University, Taegu, 702-701) ;
  • Cho, Jang-Sik (Department of Statistics, Kyungpook National University, Taegu)
  • Published : 1996.12.01

Abstract

In this paper, we propose Bayes estimators of the finite population mean based on heavy-tailed prior distributions using scale mixtures of normals. Also, the asymptotic optimality property of the proposed Bayes estimators is proved. A numerical example is provided to illustrate the results.

Keywords

References

  1. The Journal of the Royal Statistical Society(Ser. B.) v.36 Scale mixtures of normal distributions Andrews, D. F.;Mallows, C. L.
  2. Journal of the American Statistical Association v.85 Sampling based approaches to calculating marginal densities Gelfan, A. E.;Smith, A. F. M.
  3. Bayesian Statistics 3 Modeling with heavy tails O'Hagan, A.;J. M. Bernardo(ed.);M. H. DeGroot(ed.);D. V. Lindely(ed.);A. F. M. Smith(ed.)
  4. The Annals of Mathematical statistics v.35 The empirical Bayes approach to statistical decision problems Robbins, H.
  5. Statistical Science v.7 Inference from iterative simulation using multiple sequences (with discussion) Gelman, A.;Rubin, D. B.
  6. Biometrika v.74 On scale mixtures of normal distributions West, M.
  7. Communication in Statistics-Theory and Methods v.50 no.5&6 Gibbs smapling for marginal posterior expectations Gelfand, A. E.;Smith, A. F. M.
  8. IEEE Transactions on Pattern Analysis and Machine Intelligence v.6 Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images Geman, S.;Geman, D.
  9. Bayesian Statistics 2 Generalized linear models: Scale parameters, outliers accommodation and prior distributions West, M.;J. M. Bernardo(ed.).M. H. DeGroot(ed.);D. V. Lindley(ed.);A. F. M. Smith(ed.)
  10. Sampling Techniques(3rd edn.) Cochran, W. G.
  11. The Journal of the Royal Statistical Society(Ser, B,) v.41 On outlier rejection phenomena in Bayes inference O'Hagan, A.
  12. Bayesian Inference in Statistical Analysis Box, G. E. P.;Tiao, G. C.
  13. Journal of the American Statistical Association v.85 Illustration of Bayesian inference in normal data models using Gibbs smapling Gelfand, A. E.;Hills, S. E.;Racine-Poon, A.;Smith, A. F. M.
  14. Sankhya(Ser. A) v.32 The Hajek-Renyi inequality for sampling from a finite population Sen, P. K.
  15. Bayesian Statistics 2 Generalized linear models: Scale parameters, outliers accommodation and prior distributions West, M.;J. M. Bernardo(ed.).M. H. DeGroot(ed.);D. V. Lindley(ed.);A. F. M. Smith(ed.)
  16. Biometrika v.51 A Bayesin approach to some outlier problems Box, G. E. P.;Tiao, G. C.
  17. The Journal of the Royal Statistical Society(Ser. B) v.31 Subjective Bayesian models in sampling finite populations(with discussion) Ericson, W. A.
  18. Biometrika v.60 Posterior expectation for large observations Dawid, A. P.