Two Crystal Structures of the Vacuum-Dehydrated Fully $Ag^+$-Exchanged Zeolite X

$Ag^+$ 이온으로 완전히 치환되고 탈수된 두개의 제올라이트 X의 결정구조

  • Jang, Se Bok (Department of Chemistry, Pusan National University) ;
  • Park, Sang Yun (Korea Maritime University) ;
  • Song, Seong Hwan (Department of Chemistry, Engineering, Dongseo University) ;
  • Jeong, Mi Suk (Department of Chemistry, Pusan National University) ;
  • Kim, Yang (Department of Chemistry, Pusan National University)
  • Published : 19960700


Two crystal structures of the vacuum dehydrated $Ag^+$-exchanged zeolite X have been determined by single-crystal X-ray diffraction techniques in the cubic space group Fd3 at 21(1)$^{\circ}C$ (a=24.922(1)${\AA}$ and a=24.901(1)${\AA}$, respectively). Each crystal was ion exchanged in flowing streams of aqueous $AgNO_3$ for three days. The first crystal was dehydrated at 300$^{\circ}C$ and $2{\times}10^{-6$torr for two days. The second crystal was similarly dehydrated at 350$^{\circ}C$. Their structures were refined to the final error indices, $R_1=0.095\;and\;R_2=0.092$ with 227 reflections, and $R_1=0.096\;and\;R_2=0.087$ with 334 reflections, respectively, for which I > 3${\sigma}$(I). In the first crystal, Ag species are found at five different crystallographic sites: sixteen $Ag^+$ ions fill the site I, the center of the double 6-ring, thirty-two Ag0 atoms fill the I' site in the sodalite cavities opposite double six-rings, seventeen $Ag^+$ ions lie at the 32-fold site II' inside the sodalite cavity at the single six-oxygen ring in the supercage, fifteen Ag+ ions lie at the 32-fold site II, in the supercage, and the remaining twelve $Ag^+$ ions lie at site III' in the supercage at a little off two-fold axes. In the second crystal, all Ag species are located similarly as crystal 1; 16 at site I, 28 at site I', 16 at site II, 16 at site II', 6 at site III and 6 at site III'. Total 88 silver species were found per unit cell. The remaining four Ag atoms were migrated out of the zeolite framework to form small silver crystallites on the surface of the zeolite single crystal. In the first structure, the numbers of Ag atoms per unit cell are approximately 32.0 and these may form tetrahedral $Ag_4$ clusters at the centers of the sodalite cavities. The probable four-atom cluster is stabilized by coordination to two $Ag^+$ ions. The Ag-Ag distance in the cluster, ca. 3.05 ${\AA}$, is a little longer than 2.89 ${\AA}$, Ag-Ag distance in silver metal. At least two six-ring $Ag^+$ ions on sodalite cavity (site II') must necessarily approach this cluster and this cluster may be viewed as a distorted octahedral silver cluster, (Ag6)2+.



  1. Bull. Chem. Soc. Jpn. v.45 Tsutsumi, K.;Takahashi, H.
  2. Bull. Chem. Soc. Jpn. v.48 Hatsumoto, S.;Nitta, M.;Ogawa, K.;Aomura, K.
  3. J. Am. Chem. Soc. v.100 Kim, Y.;Seff, K.
  4. Zeolites v.1 Genllens, L. R.;Mortie, W. J.;Uytterhoeven, J. B.
  5. J. Am. Chem. Soc. v.78 Breck, D. W.;Eversole, W. G.;Milton, R. M.;Reed, T. B.;Thomas, T. L.
  6. J. Phys. Chem. v.71 Sherry, H. S.
  7. J. Catal. v.35 Nitta, M.;Aomura, K.;Matsumoto, S.
  8. International Tables for X-ray Crystallography v.II
  9. Bull. Korean Chem. Soc. v.16 Jang, S. B.;Kim, Y.
  10. International Tables for X-ray Crystallography v.IV
  11. Zeolite Molecular Sieves Breck, D. W.
  12. Am. Mineral. v.39 Loewenstein, W.
  13. Adv. Chem. Series, No. 101, American Chemical Society Molecular Sieve Zeolites-I Smith, J. V.;Flanigen, E. M.(ed.);Sand, L. B.(ed.)
  14. Chemical Reviews v.94 Sun, T.;Seff, K.
  15. Sov. Phys. Crystallogr v.34 Butikova, I. K.;Shepelev, Y. F.;Smolin, Y. I.
  16. J. Phys. Chem. v.69 Yates, D. J. C.
  17. Acta Crystallogr. v.18 Cromer, D. T.
  18. Handbook of Chemistry and Physics (70th Ed.)
  19. J. Phys. Chem. v.93 Schoonheydt, R. A.;Leeman, H.
  20. Calculations were performed using the "MolEN" supplied by Enraf-Nonius
  21. Private Communication Beyer, H.
  22. Reference 21
  23. Reference 26
  24. J. Catal. v.32 Huang, Y. Y.
  25. Zeolites v.1 Gellens, L. R.;Mortie, W. J.;Uytterhoeven, J. B.
  26. Zeolites v.6 Bogomolov, V. N.;Petranovskii, V. P.
  27. J. Catal. v.22 Naccache, C. M.;Ben Taarit, Y.
  28. Doscuss . Faraday Soc. v.41 Rabo, J. A.;Angell, C. L.;Kasai, P. H.;Schomaker, V.
  29. J. Chem. Soc. Faraday Trans. v.1.72 Beyer, H.;Jacoba, P. A.;Uytter hoeven, J. B.
  30. J. Am. Chem. Soc. v.99 Kim, Y.;Seff, K.
  31. J. Phys. Chem. v.82 Kim, Y.;Seff, K.