Determination of Mercury at Electrodes Modified with Poly-$[Ru(v-bpy)_3]^{2+}$ Incorporating Amino Acids

몇 가지 아미노산으로 변성한 $[Ru(v-bpy)_3]^{2+}$ 고분자 피막 전극을 이용한 수은의 정량

  • 차성극 (경남대학교 자연과학대학 화학과)
  • Published : 19960800

Abstract

Electrodes modified with threonine, methionine and serine as ligands, which are incorporated by ion exchange into a polycationic film of electropolymerized $[Ru(v-bpy)_3]^{2+}$, have been employed in the determination of mercury in solution. The redox response of the surface-immobilized mercury/ligand complex was used as the analytical signal. When the polymeric film was electropolymerized, the supporting electrolytes were TBAP and $KPF_6$ to compare the morphology and anodic stripping of resulted polymer electrodes. At the case of the latter, the film had high porosity to give an easy incorporation of dopant anions into polymeric film matrix and a high sensitivity in determination of mercury ion. Especially, this polymer modified electrode exhibited possibility of multiple use in mercury determination over ten times. In all cases, calibration curves which were plotted by log of the surface coverage-normalized redox response vs. log[Hg] exhibited an excellent correlation (r=0.99) for mercury concentrations ranging from 1.0{\times}10^{-8}{\sim}1.0{\times}10^{-2}M$. At these curves relative standard deviation was 5∼8% and saturation response was not observed at high concentration region. Serine of the employed ligands had the best sensitivity in analytical application, which had greater stability constant in forming a complex with mercury than others as $pK_{Hg}=8.54$. The formation constants of threonine and methionine were respectively 7.04 and 7.80.

Keywords

References

  1. Annu. Rev. Mater. Sci. v.14 Murray, R. W.
  2. Chem. Eng. News Faulkner, L. R.
  3. Coord. Chem. Rev. v.86 Abruna, H. D.
  4. Electroresponsive Molecular and Polymeric Systems abruna, H. D.;Skotheim, T. A.(ed.)
  5. Talanta v.38 Gao, Z.;Li, P.;Zhao, Z.
  6. Anal. Chem. v.60 Hurrel, H. C.;Abruna, H. D.
  7. J. Electro. Chem. v.87 Kasem, K. K.;Abruna, H. D.
  8. Talanta v.35 Wang, J.;Bonukdar, M.
  9. Anal. Lett. v.21 Imidides, M. D.;O'Riordum, D. M. T.;Wallace, G. G.
  10. Anal. Chem. v.65 Cha, S. K.;Abruna, H. D.
  11. Handbook of Conducting Polymers v.1 Stothem, T.A.
  12. Experimental Electrochemistry for Chemist Sawyer, D. T.;Roberts, Jr. J. L.
  13. Talanta v.38 Cha, S. K.;Kasem, K. K.;Abruna, H. D.
  14. Electroanalysis v.2 Kalcher, K
  15. Quantitive Chemical Analysis(4th ed.) Kolthoff, I. M.;sandell, E. B.;Meehan, E. J.;Bruckenstein, S.
  16. J. Am. Chem. Soc. v.103 Abruna, H. D.;Denisevich, P.;Umana, M.;Meyer, T. I.;Murray, R. W.
  17. Analyst v.115 Liu, K. Z.;Wu, Q. C.;Liu, H. L.
  18. Anal. Chem. v.57 Guadalupe, A. R.;Abruna, H. D.
  19. Anal. Chem. v.62 Cha, S. K.;Abruna, H. D.
  20. Metal Ammine Formation in Aqueous Solution Bjerrum, J.
  21. J. Phys. Chem. v.76 Li, N. C.l;Gawron, O.;Bascuas, G.
  22. J, Mat. Sci. v.28 Cha, S. K.;Chung, J-J.;Park, E-H.;Cha, C. K.;Abruna, H. D.
  23. Purification of Laboratory Chemicals(3rd ed.) Perrin, D. D.;Armarego, W. L. F.
  24. Talanta v.39 Svancara, I.;Vytras, K.;Hua, C.;Smyth, M. R.