Linkage Positions of Oligosaccharides by Low Energy Collision Tandem Mass Spectrometry: Effect of the Addition of Metal Cations

저에너지 충돌 탄뎀 질량분석법을 이용한 올리고당의 연결부위 연구: 금속양이온의 첨가가 미치는 영향

  • 육은순 (호남대학교 환경원예학과)
  • Published : 19960800

Abstract

FAB CAD MS/MS(Fast Atom Bombardment Collision Activated Dissociation Mass Spectrometry/Mass Spectrometry) was used to study different degree of bond stability according to the linkage positions of alkali cationized $(Na^+, Li^+, K^+, NH_4^+)$ stereoisomeric and synthetic oligosaccharides. The alkali metal cations were much more stable, requiring over -40 eV of collision energy vs. only -10 eV for the protonated forms. Of the cations, the potassium cationized trisaccharides were more stable than the others. They would not yield fragment ions under the conditions of collision available in triple quadrupole. Other cationized species exhibited decreasing stability in the series $Nap^+>Li^+>NH_4^+$ using 0.8 mTorr argon pressure in the collision cell. Metal cations of the oligosaccharides maintained charge principally on the amino sugar as shown by shift of all the fragment ions containing the amino sugar. The reason for the higher stability of the metal cationized form is the formation of crown ether-like bond around metal cations, N-acetyl group on GlcNAc and oxygens on fucose moiety. Depending on the metal sizes and the conformation of linkage-isomeric region, cationized species gave linkage dependent fragment patterns and exhibited stability in the series 1-6 > 1-4 > 1-3 linkage.

Keywords

References

  1. Anal. Chem. v.61 Fujii, T.;Ogura, M.;Jimba, H.
  2. Can, J. Chem. v.58 Lemieux, R. U.;Bock, K.;Delbaere, L. T. J.;Koto, S.;Rao, V. S.
  3. Biomed. Environ. Mass Spectrom v.20 Orlando, R.;Bush, C. A.;Fenselau, C.
  4. Org. Mass Spectrom. v.13 Rollgen, F. W.;Giessmann, U.;Borchers, F.;Levesen, K.
  5. J. Am. Chem. Soc. v.111 Grese, R. P.;Cerny, R. L.;Gross, M. L.
  6. Carbohydr. Res. v.152 Madiyalakan, R.
  7. Biomed. Environ. Mass Spectrom. v.16 Dell, A.;Carman, N. H.;Tiller, P. R.;Thomas-Oates, J. E.
  8. Organic Mass Spectrometry v.24 Domon, B.;Muller, D. R.;Richter, W. J.
  9. International Journal of Mass Spectrometry and Ion Processes v.100 Domon, B.;Muller, D. R.;Richter, W. J.
  10. Methods in Enzymology v.193 Gillece-Castro, B. L.;Burlingame, A. L.
  11. Anal. Biochdem. v.191 Baldwin, M. A.;Stahl, N.;Reinders, L. G.;Gibson, B. W.;Prusiner, S. B.;Burlingane, A. l.
  12. Biochemistry v.30 Kasama, T.;Handa, S.
  13. J. Am. Chem. Soc. v.172 Laine, R. A.;Pamidimukkala, K. M.;French, A. D.;Hall, R. W.;Abbas, S. A.;Jain, R. K. Matta, K. L..
  14. J. Am. Chem. Soc. v.117 DeFrees, S. A.;Kosch, W.;Way, W.;Paulson, J. C.;Sabesan, S.;Halcomb, R. L.;Huang, D.;Ichikawa, Y.;Wong, C.
  15. J. Am. Chem. Soc. v.116 Jain, R. K.;Vig, R.;Rampal, R.;chandrasekaran, E. V.;Matta, K. L.
  16. Carbohydr. Res. v.172 Jain, R. K.;Kohata, K.;Abbas, S. A.;Matta, K. L.
  17. Cancer Res. v.51 Tsujisaki, M.;Imai, K.;Tokuch, S.;Hanzawa, Y.;Ishida, T.;Kitagawa, H.;Hinoda, Y.;Yachi, a.
  18. Trends in Analytical Chemistry v.8 Dell, A.;Rogers, M. E.
  19. J. Appl. Biochem. Biotechnol. v.23 Lee, K. B.;Loganathan, D.;Merchant, Z. M.;Linhardt, R.
  20. Mass Spectrometry Reviews v.6 Egge, H.;Peter-Katalinic
  21. J. B. C. v.253 Paulson, J. C.;Prieels, J. P.;Glasgow, L. R.;Hill, R. L.
  22. J. Endocrinol. v.125 Wilson, C. A.;Leigh, A. J.;Chapman, A. J.
  23. Anal. Chem. v.58 Mallis, L. M.;Russel, D. H.
  24. Mass Spectrometry Reviews v.8 Gross, M. L.
  25. J. Am. Chem. Soc. v.108 Adams, J.;Gross, M. L.