Diffusion Characteristics of Fatty Acid using Supercritical Fluid Chromatographic Method

초임계유체 크로마토그래피를 이용한 지방산의 확산특성 해석

  • 이승범 (단국대학교 공과대학 화학공학과) ;
  • 성대형 (단국대학교 공과대학 화학공학과) ;
  • 김형수 (단국대학교 공과대학 화학공학과) ;
  • 홍인권 (단국대학교 공과대학 화학공학과)
  • Received : 1996.04.27
  • Accepted : 1996.10.11
  • Published : 1996.12.10


Supercritical fluid chromatographic method was recommended as an alternative separation method of fatty acids of the conventional method such as distillation or extraction. Although diffusion characteristics are varied by the carbon numbers and the degree of unsaturation of fatty acids, the quantitative data were so rare that the commercialization of supercritical fluid chromatographic method has been hindered. In this study, diffusion coefficients of fatty acids which are differently unsaturated are measured by CPB method in the range of 308.15K to 328.15K and 13MPa to 17MPa in supercritical carbon dioxide. A decrease in the binary diffusion coefficient was observed with an increase in temperature and pressure. Also, the decrease in the binary diffusion coefficient with increasing fluid density and viscosity. Wilke-Chang equation, Funazukuri empirical equation, and Matthews-Akgerman equation are used to correlate the experimental diffusion coefficients of fatty acids in supercritical carbon dioxide. Among the various theoretical equations, Matthews-Akgerman equation based on RHS theory was suggested as a more successful correlation model with experimental data.



  1. Lipids J. F. Mead
  2. Lipids in Foods Chemistry, Biochemistry and Technology F. D. Gunstone;F. A. Norris
  3. Chem. Eng. R. G. Bonmati;G. Chapelet-Letourneux;J. M. Marggulis
  4. Chem. Eng. Sc. v.5 J. J. van Deemter;F. J. Zuiderweg;A. Klinkenberg
  5. AIChE J. v.1 C. R. Wilke;P. Chang
  6. AIChE J. v.38 T. Funazukuri;Y. Ishiwata;N. Wakao
  7. The Mathematical Theory of Nonuniform Gases S. Chapman;T. G. Cowling
  8. J. Chem. Phys. v.60 J. H. Dymond
  9. Science v.174 J. H. Hildebrand
  10. J. Chem. Phys. v.77 S. H. Chen;H. T. Davis;D. F. Evans
  11. AIChE J. v.33 M. A. Matthews;A. Akgerman
  12. Proc. R. Soc. London., Ser. A v.225 G. Taylor
  13. Proc. R. Soc. London., Ser. A v.235 R. Aris;G. Taylor
  14. J. Chem. Phys. v.33 J. C. Giddings;S. L. Seager
  15. Int. J. Thermophys v.1 A. C. Alizadeh;A. Nieto de Castro;W. A. Wakeham
  16. J. Chem. Ref. Data v.1 T. R. Marrero;E. A. Mason
  17. Ind. Eng. Chem. Fundam v.1 J. C. Giddings;S. L. Seager
  18. Ber. Bunsen-Ges. Phys. Chem. v.83 I. Swaid;G. Schneider
  19. Ind. Eng. Chem. Res. v.30 K. K. Liong;P. A. Wells;N. R. Foster
  20. J. of Korean Ind. & Eng. Chemistry v.6 J. S. Lee;B. J. Jeon;I. H. Jung;I. K. Hong
  21. AIChE J. v.32 P. G. Debenedetti;R. C. Reid
  22. Anal. Chem. v.59 P. R. Sassiat;P. Mourier;M. H. Caude;R. H. Rosset
  23. The Properties of Gases & Liquids(4th ed.) R. C. Reid;J. M. Prausnitz;B. E. Poling
  24. International Thermodynamic Tables of the Fluid State Carbon Dioxide S. Angus
  25. J. Chem. Phys. v.57 P. D. Neufeld;A. R. Janzen;R. A. Aziz
  26. Ind. Eng. Chem. Res. v.22 T. H. Chung;M. Ajlan;L. L. Lee;K. E. Starling