Inactivation of Lactobacillus plantarum by High Voltage Pulsed Electric Fields Treatment

고전압 펄스 전기장 처리에 의한 Lactobacillus plantarum의 불활성화

  • Published : 1997.12.01

Abstract

Lethal effects of high voltage pulsed electric fields (PEF) on suspensions of Lactobacillus plantarum cells in phosphate buffer solution were examined by using continuous recycle treatment system. Critical electric field strength and treatment time needed for inactivation of L. plantarum were 13.6 kV/cm and $16.1\;{\mu}s$ at room temperature, respectively. As decrease in frequency (decreasing pulse number), the degree of inactivation of L. plantarum was increased. A 2.5 log reduction in microbial population could be achieved with an electric field strength of 80 kV/cm, 300 Hz frequency and $2000\;{\mu}s$ treatment time. Survivability was decreased with increase in total treatment time (cycle number) and frequency at the same cycle number. As sterilization model of continuous recycle PEF treatment, $logS=-N_m\;log\;m+B$ and $N_m=k_1\;P_n+k_2$ were established. This model was very well fitted to tile empirical data. The rate of inactivation increased with increase in the processing temperature. The maximum reduction in survivability (5.6 log reduction) was obtained with 80 kV/cm electric field strength at $50^{\circ}C$ for $1000\;{\mu}s$ treatment.

Keywords

High voltage pulsed electric fields (PEF);Lactobacillus plantarum;inactivation