On the cohen-macaulayness of the associated graded ring of an equimultiple ideal

  • Kim, Mee-Kyoung (Department of Mathematics, Sung Kyun Kwan University, Suwan 440-746)
  • Published : 1997.02.01

Abstract

Throughout this paper, all rings are assumed to be commutative with identity. By a local ring (R,m), we mean a Noetherian ring R which has a unique maximal ideal m. Let I be an ideal in a ring R and t an indeterminate over R.

References

  1. Proc. Cambridge Phill. Soc. v.72 Codimension and Analytic Spread L. Burch
  2. Math. Z. v.68 Graded Cohen-Macaulay rings associated to equimultiple ideals U. Grothe;M. Herrmann;U. Orbanz
  3. Pac. J. of Math. v.44 Five theorems on Macaulay rings M. Hochster;L. J. Ratliff
  4. J. Nat. Sci. Sung Kyun Kwan Univ. v.45 no.2 On the Cohen-Macaulay Property of Quotient Rings M.-K.Kim
  5. Cambridge Studies in Adanced Math. v.8 Commutative ring theory H.Matsumura
  6. Proc. Cambridge Phil. Soc. v.50 Reductions of ideals in local rings D. G. Northcott;D. Rees
  7. J. Math. Kyoto Univ. v.17 On the associated graded ring of a local Cohen-Macaulay ring J. D. Sally
  8. Comp. Math. v.40 Tangent Cones at Gorenstein Singularities J. D. Sally
  9. Ph. D. Thesis, Purdue Univ. Coefficients ideals of the Hilbert polynomial integral closures of parameter ideals K. Shah
  10. Nagoya Math. v.72 Form rings and regular sequence P. Valabrega;G. Valla