Bulletin of the Korean Mathematical Society (대한수학회보)
- Volume 34 Issue 1
- /
- Pages.103-114
- /
- 1997
- /
- 1015-8634(pISSN)
- /
- 2234-3016(eISSN)
Asymptotic dirichlet problem for schrodinger operator and rough isometry
- Yoon, Jaihan (Department of Mathematics, Seoul National University)
- Published : 1997.02.01
Abstract
The asymptotic Dirichlet problem for harmonic functions on a noncompact complete Riemannian manifold has a long history. It is to find the harmonic function satisfying the given Dirichlet boundary condition at infinity. By now, it is well understood [A, AS, Ch, S], when M is a Cartan-Hadamard manifold with sectional curvature $-b^2 \leq K_M \leq -a^2 < 0$. (By a Cartan-Hadamard manifold, we mean a complete simply connected manifold of non-positive sectional curvature.)
File
References
- J. Diff. Geom. v.18 The Dirichlet problem at infinity for manifolds of negative curvature M. T. Anderson
- Ann. Math. v.121 Positive harmonic functions on complete manifolds of negative curvature M. T. Anderson;R. Schoen
- Ann. Sci. Ec. Norm. Sup. Paris v.15 A note on the isoperimetric constant P. Buser
- Comm. Anal. Geom. v.1 The Dirichlet problem at infinity for nonpositively curved manifolds S. Y. Cheng
- Trans. of Amer. Math. Soc. v.281 Asymptotic Dirichlet problems for harmonic functions on Riemannian manifolds H. I. Choi
- Rough Isometry and the Asymptotic Dirichlet Problem H. I. Choi;S. W. Kim;Y. H. Lee
- Varietes riemanniennes isometriques alinfini Th. Coulhon;L. Saloff-Coste
- On harmonic rough-isometries P. Li;J. Wang
- Springer Lecture Notes in Mathmatics v.1201 Analytic inequalities, and rough isometries between noncompact Riemannian manifolds M. Kanai
- J. Math. Soc. Japan v.37 Rough isometries, and combinatorial approximations of geometries of non-compact riemannian manifolds M. Kanai
- J. Math. Soc. Japan v.38 Rough isometries and the parabolicity of riemannian manifolds M. Kanai
- Lectures on Differential Geometry R. Schoen;S. T. Yau
- J. Diff. Geom. v.18 The Dirichlet problem at infinity for a negatively curved manifold D. Sullivan