Bulletin of the Korean Mathematical Society (대한수학회보)
- Volume 34 Issue 1
- /
- Pages.127-133
- /
- 1997
- /
- 1015-8634(pISSN)
- /
- 2234-3016(eISSN)
Uniqueness of Bases for almost linear spaces
- Im, Sung-Mo (Department of Mathematics, College of National Science, Chungbuk National University, Cheongju 360-763) ;
- Lee, Sang-Han (Department of Mathematics, College of National Science, Chungbuk National University, Cheongju 360-763)
- Published : 1997.02.01
Abstract
O. Mayer[9] introduced an almost linear space (als), a generalization of a linear space. The notion of a basis for an als was introduced by G. Godini[3]. Later, man properties of an als established by a number of authors. In this paper, we prove that the cardinality of bases for an als is unique. All spaces involved in this paper are over the real field $R$. Let us denote by $R_+$ the set ${\lambda \in R : \lambda \geq 0}$. We recall some definitions used in this paper.
File
References
- Normed linear spaces M. M. Day
- Pure and applied Mathematics v.7 Linear operators N. Dunford;J. Schwartz
- Proceedings of the 12th Winter School on Abstract Analysis (Srni 1984). Suppl. Rend. Circ. Mat. Palermo Ⅱ. Ser. v.5 An approach to generalizing Banach spaces: Normed almost linear spaces G. Godini
- J. Approx. Theory v.43 A framework for best simultaneous approximation: Normed almost linear spaces G. Godini
- Math. Ann. v.279 On Normed Almost Linear Spaces G. Godini
- Comm. Korean Math. Soc. v.10 Reflexivity of normed almost linear spaces S. H. Lee
- J. Korea Soc. of Math. Edu. (Series B), The Pure and Applied Math. v.2 Basis for almost linear spaces G. Godini
- Ph. D. Thesis Normed almost linear spaces G. Godini
- Computing v.5 Algebraische und metrische strukturen in der intervallrechnung und einige anwendungen O. Mayer