Regularity of solutions to Helmholtz-type problems with absorbing boundary conditions in nonsmooth domains

  • Kim, Jinsoo (Department of Mathematics, Seoul National University, Seoul 151-742) ;
  • Dongwoo Sheen (Department of Mathematics, Seoul National University, Seoul 151-742)
  • Published : 1997.02.01

Abstract

For the numerical simulation of wave phenomena either in unbounded domains that it is not feasible to compute solutions on the entire region, it is needed to truncate the original domains to manageable bounded domains whose geometries are simple but usually nonsmooth. On the artificial boundaries thus created, absorbing boundary conditions are taken so that the significant part of waves arriving at the artificial boundaries can be transmitted [5,10,11,16,17,26]$.

References

  1. Sobolev Spaces R. A. Adams
  2. Comm. Pure Appl. Math. v.12 Estimates Near the Boundary for Solutions of Elliptic Partial Differential Equations Satisfying General Boundary Conditions Ⅰ S. Agmon;A. Douglis;L. Nirenberg
  3. Comm. Pure Appl. Math. v.17 Estimates Near the Boundary for Solutions of Elliptic Partial Differential Equations Satisfying General Boundary Conditions S. Agmon;A. Douglis;L. Nirenberg
  4. Handbook of Numerical Analysis, Finite Element Methods v.Ⅱ P. G. Ciarlet;J. L. Lions
  5. Bull. Seis. Soc. Amer. v.67 Absorbiny Boundary Conditions for Acoustic and Elastic, Wave Equations R. Clayton;B. Engquist
  6. Lecture Notes in Mathematics 1341 Elliptic Boundary Value Problems on Corner Domains M. Dauge
  7. Mathematical Analysis and Numerical Methods for Science and Technology v.1-5 R. Dautray;J. L. Lions
  8. Math. Mod. Meth. Appl. Sci. v.4 Approximation of Scalar Waves in the Space-Frequency Domain J. Douglas, Jr.;J. E. Santos;D. Sheen
  9. Math. Mod. Meth. Appl. Sci. v.3 Frequency Domain Treatment of One-Dimensional Scalar Waves J. Douglas, Jr.;J. E. Santos;D. Sheen;L. S. Bennethum
  10. Math. Comp. v.31 Absorbing Boundary Conditions for the Numerical Simulation of Waves B. Engquist;A. Majda
  11. Comm. Pure Appl. Math. v.32 Radiation Boundary Conditions for Acoustic and Elastic Wave Calculations B. Engquist;A. Majda
  12. Trans. Amer. Math. Soc. v.346 An Elliptic Regularity Estimate for a Problem Arising from the Frequency Domain Treatment of Waves X. Feng;D. Sheen
  13. J. Differential Equations v.15 On the Existence, Uniqueness and Regularity of Solutions to General Elliptic Boundary Value Problems R. S. Freeman;M. Schechter
  14. Elliptic Partial Differential Equations of Second Order D. Gilbarg;N. S. Trudinger
  15. Elliptic Problems in Nonsmooth Domains P. Grisvard
  16. Math. Comp. v.47 Absorbing Boundary Conditions for Difference Approximations to the Multi-Dimensional Wave Equation R. L. Higdon
  17. SIAM J. Numer. Anal. v.27 Radiation Boundary Conditions for Elastic Wave Propagation R. L. Higdon
  18. Math. USSR-Sb v.3 Traces of Functions in the Space $\stackrel{l}{p}$ on Pieceunse Smooth Surfaces G. N. Jakovlev
  19. A Priori Estimates for Elliptic Boundary Value Problems with Nonlinear Boundary Conditions J. Kim;D. Sheen
  20. Initial Boundary Value Problems in Mathematical Physics R. Leis
  21. Non-Homogeneous Boundary Value Problems and Applications v.Ⅰ J. L. Lions;E. Magenes
  22. Manuscripta Math. v.58 The Trace of Sobolev Slobodeckjj Spaces on Lipschitz Domains J. Marschall
  23. Czechoslovak. Math. J. v.12 Sur les Domaines de Type N J. Necas
  24. Les Methodes Directes en Theorie des Equations Elliptiques J. Necas
  25. Introduction to the Theory of Nonlinear Elliplic Equations J. Necas
  26. Technical Report #159 Absorbing Boundary Conditions for Wave Transmissions D. Sheen
  27. J. Funct. Anal. v.59 Layer Potentials and Regularity for the Dirichlet Problem for Laplace's Equation in Lipschitz Domains G. Verchota